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Conventions

The set N is either used to notate
Either {0, 1, 2, · · · }
Or {1, 2, 3, · · · }

To avoid confusion between the two conventions, we will use
N0 = {0, 1, 2, · · · }
N⩾1 = {1, 2, 3, · · · }
Which hopefully minimises ambiguity on this
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Lemons

Lemon 1: Convolution (Actually called The Cauchy Product too) (Math Discord)

1.

Let F and G be functions, such that;

F (x) =

n∑
i=0

aixi

G(x) =

n∑
i=0

bix
i

Now,

F (x)G(x) =

n+m∑
i=0

cixi

Where

ci =

i∑
k=0

akbi−k

i.e.;

F (x)G(x) =

n+m∑
i=0

i∑
k=0

akbi−kxi

(
Or equivalently, F(x)G(x) =

n+m∑
i=0

i∑
k=0

ai − kbkx
i

)
2.

Also, given
∑n

i=0 ai and
∑n

i=0 bi; (
n∑

i=0

ai

)(
n∑

i=0

bi

)
=

n∑
i=0

ci

Where

ci =

i∑
k=0

akbi−k

i.e. (
n∑

i=0

ai

)(
n∑

i=0

bi

)
=

n∑
i=0

i∑
k=0

akbi−k

⋆ Works not only for n ∈ N0 but also for lim
n→∞

, i.e. infinite series.
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Lemon 2: Definition of sums using an index set (Math Discord)

Let I be an index set with i ∈ I and f(i) ≥ 0 for all i,

∑
i∈I

f(i) := sup

{∑
i∈J

f(i) : J ⊆ I ∧ J finite

}

In the cases where f(i) can be smaller than 0,

You would have to specify a way of exhausting the index set using finite subsets, and the sum may
exist for some such choice, but it would be very dependent on this choice in general.
(|f | here means the outputs of the function f , or more precisely, elements of its range)

If |f | is summable, which requires that it is nonzero on a countable set,
(Countable means either finite or countably infinite here, including the empty set)

then the definition is to take an exhausting collection of finite sets and take the limit of the associated
finite sums.

Facts:

1. This limit exists!
2. This limit is independent of the choice of exhausting collection
(summability of |f | used here to prove both 1 and 2).

If |f | is not summable, then you do not have existence/independence, but you can sometimes still
talk about limits over a particular choice exhausting collection of finite subsets.
(This is analogous to summing things like 1− 1/2 + 1/3− 1/4 + · · · ).

Also, something else noteworthy is that for a sum to be convergent, there can at most be countably
many nonzero terms!

See:

1. Riemann Rearrangement Theorem

2. https://math.stackexchange.com/questions/1413874/can-we-add-an-uncountable-number-of-positive-
elements-and-can-this-sum-be-finit

3. https://math.stackexchange.com/questions/20661/the-sum-of-an-uncountable-number-of-positive-numbers

Another reason to learn real analysis! :D
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Lemon 3: The Rational Root Theorem
It’s a special case of Gauss’ Lemma and C2 Qns 18 is a subcase of the Rational Root Theorem (when an = 1)

Let P (x) be a polynomial;

P (x) =

n∑
i=0

aix
i

All rational roots of the polynomial P (x), in the form x = p
q where gcd(p, q) = 1, satisfy

1. p|a0

2. q|an

Lemon 4: Vieta’s Formulas

We define P (x) to be a polynomial;

P (x) =

n∑
i=0

aix
i

Let k ∈ N⩾1 where 1 ⩽ k ⩽ n.
As well as j ∈ N⩾1, with: 1 ⩽ j ⩽ k and 1 ⩽ ij ⩽ ij+1 ⩽ n, for all j.
Such that it has n (possibly repeated) roots: r1, r2, · · · , rn.

Then;

∑ k∏
j=1

rij = (−1)k
an−k

an

Normally this is written as ∑
1⩽i1⩽i2⩽···⩽ik⩽n

 k∏
j=1

rij

 = (−1)
k an−k

an

But I find that subscript under the sum way to confusing for me, since whatever you write on or below the sum, is normally information related

to what terms to sum and how to sum them up. However, here it is basically info for the product. So, I prefer to write it as words before writing

the formula instead.

The notation I prefer which looks better imo is:

Let k ∈ N⩾1 where 1 ⩽ k ⩽ n.
As well as N = {m|(m ∈ N) ∧ (m ⩽ n)}}∑

I⊆N
|I|=k

∏
i∈I

ri = (−1)k
an−k

an
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Lemon 5: Faulhaber’s Formula Inspired (to Google) by C2 Qns 7

n∑
k=1

kp =
1

p+ 1

p∑
i=0

(−1)i
(
p+ 1

i

)
Bin

p+1−i

where Bi notates the ith Bernoulli numbers, which have an explicit formula:

Bi =

i∑
j=0

j∑
v=0

(−1)v
(
j

v

)
vi

j + 1

So, I think we can also combine these to form an expliciter formula (and complicated) formula of:

n∑
k=1

kp =
1

p+ 1

p∑
i=0

(−1)i
(
p+ 1

i

) i∑
j=0

j∑
v=0

(−1)v
(
j

v

)
vi

j + 1

np+1−i


See:

1. https://proofwiki.org/wiki/Faulhaber’s Formula

2. https://www.youtube.com/watch?v=IAMfTu5bzg4

3. https://www.desmos.com/calculator/vrktco6rbh

4. https://www.desmos.com/calculator/bfnslzc5jf
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Proof of Lemons

Lemon 1
Let F and G be functions, such that;

F (x) =

n∑
i=0

aixi

G(x) =

n∑
i=0

bix
i

Now, their product is:

F (x)G(x) =

n∑
i=0

aixi ×
n∑

i=0

bix
i

= (a0x
0 + a1x

1 + · · ·+ anx
n)(b0x

0b1x
1 + · · ·+ bmxm)

= (a0b0)x
0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b2)x

2

+ · · ·+ (a0bi + a1bi−1 + · · ·+ akbi−k + · · ·+ ai−1b1 + aib0)x
i

+ · · ·+ (anbm)xn+m

So, we notice that the coefficient for a general xi is: ci =
i∑

k=0

akbi−k

And the product in general has (n+m+ 1) terms, (though coefficients can possibly be zero) ranging from
x0, x, x2, · · · to xn+m

Thus, the general formula for F (x)G(x) is

n+m∑
i=0

cix
i =

n+m∑
i=0

i∑
k=0

akbi−kx
i

In the case of the equivalent form of F (x)G(x) =
n+m∑
i=0

i∑
k=0

ai−kbkx
i,

its just indexing in the opposite direction, i.e., ak starts from i and decreases to 0 while bk starts from 0 and increases

to i, with each increase in k. Or simply swap F(x) and G(x).
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Learning Points

1. There’s a difference between simple / weak induction and complete / strong induction. (Check
out C2 Qns 3 for instance)

2. Trying to list out

α) What you know already (Info given in qns and prior knowledge that you think might be
useful)

(Even how it links to previous parts of the qns. Previous parts of the qns might give you a
direct, simple, and elegant solution instead of having to solve / proof everything from scratch.
See C2 Qns 3 lol.)
β) What the qns is asking, simplifying the question into a simpler form first.

(I guess basically like play around with the what the qns is asking, to see if you can find a form of

the qns that gives you inspiration on how to proceed)

So like, try to find the most important points needed to solve the qns, then try to think of
some ideas that might help to tackle each of those points to work towards the solution.
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1 Basic Properties of Numbers

7.

a < b a < b a < b

a2 < ab a+ b < 2b 0 < b− a

a <
√
ab

a+ b

2
< b 0 < a2 − 2ab+ b2

4ab < a2 + 2ab+ b2

√
ab <

a+ b

2

So, a <
√
ab < a+b

2 < b.

19.
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(a) Assume x1 = λy1 and x2 = λy2 for some λ ⩾ 0, notice that

x1y1 + x2y2 = λ(y21 + y22)

√
x2
1 + x2

2

√
y21 + y22 =

√
λ2(y21 + y22)

√
y21 + y22

=
√
λ2(y21 + y22)

2

= λ(y21 + y22)

Therefore, since x1y1 + x2y2 = λ(y21 + y22) equality holds for the Schwarz Inequality in this case

Now when y1 = y2 = 0,

x1y1 + x2y2 = 0

=
√

x2
1 + x2

2

√
y21 + y22

Thence, eqality trivially holds in this case as well.

Again, let λ ≥ 0, suppose that y1 and y2 are not both 0, and that there is no λ such that x1 = λy1
and x2 = λy2. Then,

0 ⩽ (λy1‘− x1)
2 and 0 ⩽ (λy2 − x2)

2

=⇒ 0 ⩽ (λy1‘− x1)
2 + (λy2 − x2)

2

The only case where (λy‘ − x1)
2 + (λy2 − x2)

2 = 0 is if x1 = λy1 and x2 = λy2. However, we
supposed that there exists no λ where this occurs. Therefore, we can safely eliminate the equality,
leaving us with:

0 < (λy1‘− x1)
2 + (λy2 − x2)

2

= λ2y21 − 2λx1y1 + x2
1 + λ2y22 − 2λx2y2 + x2

2

= λ2(y21 + y22)− 2λ(x1y1 + x2y2) + (x2
1 + x2

2)

As desired.

Since our quadratic equation here is greater than 0 for all x, we can apply the discriminant from
18.: [

2(x1y1 + x2y2)

(y21 + y22)

]2
− 4

[
(x2

1 + x2
2)

(y21 + y22)

]
< 0[

2(x1y1 + x2y2)

(y21 + y22)

]
<

√
4

[
(x2

1 + x2
2)

(y21 + y22)

]
2(x1y1 + x2y2) < 2

√
x2
1 + x2

2

√
y21 + y22

x1y1 + x2y2 <
√
x2
1 + x2

2

√
y21 + y22

Thence, we have exhausted all possible options by showing that equality holds iff x1 = λy1 and
x2 = λy2 or y2 = y2 = 0, otherwise, the inequality is true but both sides are then not equal. So,
we have proven the Schwarz Inequality.

(b)
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2xy ⩽ x2 + y2 is derived as follows:

0 ⩽ (x− y)2

0 ⩽ x2 − 2xy + y2

2xy ⩽ x2 + y2

Let x = xi√
x2
1+x2

2

and y = yi√
y2
1+y2

2

where i = 1, 2;

2xy ⩽ x2 + y2

2

(
xi√

x2
1 + x2

2

)(
yi√

y21 + y22

)
⩽

(
xi√

x2
1 + x2

2

)2

+

(
yi√

y21 + y22

)2

2xiyi√
x2
1 + x2

2

√
y21 + y22

⩽
x2
i (y

2
1 + y22) + y2i (x

2
1 + x2

2)

(x2
1 + x2

2)(y
2
1 + y22)

Now, summing the cases of i = 1 and i = 2, we get;

2x1y1√
x2
1 + x2

2

√
y21 + y22

+
2x2y2√

x2
1 + x2

2

√
y21 + y22

⩽
x2
1(y

2
1 + y22) + y21(x

2
1 + x2

2)

(x2
1 + x2

2)(y
2
1 + y22)

+
x2
2(y

2
1 + y22) + y22(x

2
1 + x2

2)

(x2
1 + x2

2)(y
2
1 + y22)

2x1y1 + 2x2y2√
x2
1 + x2

2

√
y21 + y22

⩽
2(x2

1 + x2
2)(y

2
1 + y22)

(x2
1 + x2

2)(y
2
1 + y22)

x1y1 + x2y2 ⩽
√

x2
1 + x2

2

√
y21 + y22

We indeed get that the Schwarz Inequality holds true!

(c)

We first see that:

(x2
1 + x2

2)(y
2
1 + y22) = x2

1y
2
1 + x2

1y
2
2 + x2

2y
2
1 + x2

2y
2
2

= [(x1y1)
2 + 2x1y1 + (x2y2)

2] + [(x1y2)
2 − 2(x1y2)(x2y1) + (x2y1)

2]

= (x1y1 + x2y2)
2 + (x1y2 − x2y1)

2
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2 Numbers of Various Sorts

3.
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(a)

(
n

k − 1

)
+

(
n

k

)
=

n!

(n− k + 1)!(k − 1)!
+

n!

(n− k)!k!

=
n(n− 1) · · · (n− k + 2)

(k − 1)!
+

n(n− 1) · · · (n− k + 1)

k!

=
kn(n− 1) · · · (n− k + 2)

k!
+

n(n− 1) · · · (n− k + 1)

k!

=
(k + n− k + 1)(n)(n− 1) · · · (n− k + 2)

k!

=
(n+ 1)(n)(n− 1) · · · (n− k + 2)

k!

=
(n+ 1)!

(n+ 1− k)!k!

=

(
n+ 1

k

)
Q.E.D. ■

(b)

Notice that
(
0
0

)
= 1 is a natural number. In fact this holds for

(
n
0

)
and

(
n
n

)
, for all n, because:(

n

0

)
=

n!

n!0!
= 1 =

n!

0!n!
=

(
n

n

)

Suppose that for all k and m, such that 0 ⩽ k ⩽ m < n,
(
m
k

)
is a natural number.

Consider
(
n+1
k

)
; In the case where k = 0 or k = n + 1,

(
n+1
k

)
= 1 trivially. Now look at the other

cases where k < m < n+ 1. (
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
By our hypothesis,

(
n

k−1

)
and

(
n
k

)
are both natural numbers. So,

(
n+1
k

)
, which is a sum of those

two natural numbers above, must be a natural number itself too.

Q.E.D. ■
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Note to self: This induction hypothesis (IH) is allowed legally (rigorously) because

It is not: you are NOT taking 0 as n of the IH, i.e. this is not saying that since
(0
0

)
is a natural number, anything

below it is and trying to proof that
(n
k

)
is thus a natural number.

What this induction hypothesis is saying is that since we know
(0
0

)
is a natural number, if we take 0 + 1 = 1 as the

’new’ n, then the our m can only be 0. But note that we cannot apply the formula here since
(1
0

)
=

( 0
−1

)
+

(0
0

)
and(1

1

)
=

(0
0

)
+

(0
1

)
. But it doesn’t matter since we know that they are both 1.

((n
n

)
= 1 =

(n
0

))
Let us take n = 2 instead. Now, we need to note the case where m = 1 and k = 0 or k = 1. Noting this,(2
1

)
=

(1
0

)
+

(1
1

)
. As we know that

(1
r

)
is just 1,

(2
1

)
which is a sum of 2 natural numbers, specifically 1+1 = 2 in this

case, therefore it must also be a natural number. By induction, you can just continue this chain.

(c)

For a set N with |N | = n,
(
n
k

)
is the number of subsets of N with cardinality k that can be chosen,

which is of course a natural number.
(i.e.: The number of subsets that exist with k elements chosen from N)
Equivalently, let the set of all subsets of N with cardinality k be S. Then,

(
n
k

)
= |S|, again this

must be a natural number.

This is easily verifiable for n = 0 and k = 0;

The set with cardinality 0 is ∅, so there is only 1 subset from ∅ with 0 elements, this being ∅ itself.
|{∅}| = 1. This agrees with our factorial definition of

(
n
k

)
.

Similarly,
(
n
0

)
and

(
n
n

)
are the number of subsets that can be chosen with 0 elements and n elements,

respectively, from a set with cardinality n. There exists only one such subset for each of these cases;
∅ and the set with cardinality n itself respectively.

Now, suppose that for all natural numbers k and m such that 0 ⩽ k ⩽ m ≤ n,
(
m
k

)
is a natural

number.

Consider the case of
(
n+1
k

)
In the cases where

(
n+1
0

)
or
(
n+1
n+1

)
, they equal 1 by the same argument as above.

In the other cases where 1 ⩽ k ⩽ n, we simply apply Pascal’s Rule;(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
Since

(
n

k−1

) (
n
k

)
are both natural numbers by our hypothesis, their sum,

(
n+1
k

)
must be natural

numbers as well.
Therefore, by induction, for all natural n and k,

(
n
k

)
is a natural number and is the number of

subsets with k elements of a set N , where |N | = n, that can be chosen.
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(d)

The Binomial Theorem trivially works for n = 0, as

(a+ b)0 = 1

n∑
j=0

(
0

j

)
a0−0b0 = a0b0 = 1

Suppose The Binomial Theorem works for some n, i.e. (a + b)n =
n∑

j=0

(
n
j

)
an−jbj , then we will see

that it works for n+ 1 too;

(a+ b)n+1 = (a+ b)(a+ b)n

= (a+ b)

n∑
j=0

(
n

j

)
an−jbj

= a

n∑
j=0

(
n

j

)
an−jbj + b

n∑
j=0

(
n

j

)
an−jbj

=

n∑
j=0

(
n

j

)
an−j+1bj +

n∑
j=0

(
n

j

)
an−jbj+1

=

n∑
j=0

(
n

j

)
an−j+1bj +

n+1∑
j=1

(
n

j − 1

)
an−j+1bj

To proceed, let us define
(

c
c+k

)
= 0 and

(
c

−k

)
= 0 for c ∈ N0 and k ∈ N. This definition makes sense

in two ways:
1.
(

c
−k

)
and

(
c

c+k

)
is similar to the number of ways there is to choose −k < 0 and c+ k > c number

of items, respectively, from a set with c > 0 items. But there is no such way to choose a negative
number of items or a number of items greater than which the set contains. Thus, it makes sense to
define it as 0.

2. For any m, we know
(
m+1
0

)
= 0. And defining

(
c

−k

)
and

(
c

c+k

)
this way means that Pascal’s

Formula works even more generally,
(
m+1
0

)
=
(
m
−1

)
+
(
m
0

)
= 0 + 1 = 1 and

(
m+1
m+1

)
=
(
m
m

)
+
(

m
m+1

)
=

1 + 0 = 1 which is what we want to see.

Therefore, we can continue our proof;

n∑
j=0

(
n

j

)
an−j+1bj +

n+1∑
j=1

(
n

j − 1

)
an−j+1bj

=

n+1∑
j=0

(
n

j

)
an−j+1bj +

n+1∑
j=0

(
n

j − 1

)
an−j+1bj

=

n+1∑
j=0

[(
n

j

)
+

(
n

j − 1

)]
an−j+1bj

=

n+1∑
j=0

(
n+ 1

j

)
an−j+1bj

So, by induction, we have proven that for any n ∈ N0, a, b ∈ R,

(a+ b)n =

n∑
j=0

(
n

j

)
an−j+1bj
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Q.E.D. ■

(e)(i)

Trivially,
n∑

j=0

(
n
j

)
= 2n works for n = 0;

0∑
j=0

(
0

j

)

=

(
0

0

)
=1

=20

Suppose
n∑

j=0

(
n
j

)
= 2n for some n, then it is also true for n+ 1;

n+1∑
j=0

(
n+ 1

j

)

=

n+1∑
j=0

[(
n

j − 1

)
+

(
n

j

)]

=

n+1∑
j=0

(
n

j − 1

)
+

n+1∑
j=0

(
n

j

)

=

n∑
j=0

(
n

j

)
+

n∑
j=0

(
n

j

)

(Since
(

n
n+k

)
=
(

n
−k

)
= 0 for n ∈ N0 and k ∈ N, as justified in (d))

n∑
j=0

(
n

j

)
+

n∑
j=0

(
n

j

)
=2n + 2n

=2(2n)

=2n+1

So, by induction,
n∑

j=0

(
n
j

)
= 2n for all (natural) values of n.

17



(e)(ii)

It is easily seen that
n∑

j=0

(−1)j
(
n
j

)
= 0 is true for n = 1;

1∑
j=0

(−1)j
(
1

j

)
=

(
1

0

)
−
(
1

1

)
= 1− 1 = 0

Suppose
m∑
j=0

(−1)j
(
n
j

)
= 0 holds for all natural numbers m, where

0 ⩽ k ⩽ m < n ,

Now consider
n+1∑
j=0

(−1)j
(
n+1
j

)
;

n+1∑
j=0

(−1)j
(
n

j

)

=

n+1∑
j=0

(−1)j
(
n+ 1

j

)

=

n+1∑
j=0

(−1)j
[(

n

j − 1

)
+

(
n

j

)]

=

n+1∑
j=0

(−1)j
(

n

j − 1

)
+

n+1∑
j=0

(−1)j
(
n

j

)

=

n+1∑
j=1

(−1)j
(

n

j − 1

)
+

n∑
j=0

(−1)j
(
n

j

)

=

n∑
j=0

(−1)j
(
n

j

)
+

n∑
j=0

(−1)j
(
n

j

)

Since we know that
m∑
j=0

(−1)j
(
m
j

)
for 0 ⩽ m ⩽ n:

n∑
j=0

(−1)j
(
n

j

)
+

n∑
j=0

(−1)j
(
n

j

)
=0 + 0

=0

So, by induction,
n∑

j=0

(−1)j
(
n
j

)
= 0 for all n ∈ N⩾1
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(e)(iii)

We see that
n∑

ℓ odd

(
n
ℓ

)
= 2n−1 and

n∑
ℓ even

(
n
ℓ

)
= 2n−1, rather simply in the case of n = 1,

1∑
ℓ odd

(
1

ℓ

)
=

(
1

1

)
= 20 = 21−1

1∑
ℓ even

(
1

ℓ

)
=

(
1

0

)
= 20 = 21−1

Suppose that
m∑

ℓ odd

(
m
ℓ

)
= 2m−1 and

m∑
ℓ even

(
m
ℓ

)
= 2m−1 and are true for all natural numbers m,

where 0 ⩽ ℓ ⩽ m < n

Then, it holds true that
n+1∑
ℓ odd

(
n+1
ℓ

)
= 2(n+1)−1:

n+1∑
ℓ odd

(
n+ 1

ℓ

)

=

n+1∑
ℓ odd

[(
n

ℓ− 1

)
+

(
n

ℓ

)]

By our hypothesis, we know that
n∑

ℓ odd

(
n
ℓ

)
is the same as 2n−1, and

n∑
ℓ even

(
n
ℓ

)
the same as 2n−1.

n+1∑
ℓ odd

[(
n

ℓ− 1

)
+

(
n

ℓ

)]

=

n+1∑
ℓ odd

(
n

ℓ− 1

)
+ 2n−1

=

n∑
ℓ even

(
n

ℓ

)
+ 2n−1

=2n−1 + 2n−1

=2
(
2n−1

)
=2n

Therefore, by induction,
n∑

ℓ odd

(
n
ℓ

)
= 2n−1 is true for all n ∈ N⩾1

(e)(iv) Just take (e)(ii)-(e)(iii) lol.
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Answer
3.(a) Don’t really have to say anything for this, just slap that factorial definition down
(b) Should be ok, about the same
(c)

(d) Should be good too :)
(e)(i) ”lmao just apply the binomial theorem” ”(1 + 1)n =

∑n
j=0

(
n
j

)
1n−j1j =

∑n
j=0

(
n
j

)
(e)(ii) Apply TBT: (1− 1)n e(iii) ”lol just take (i)-(ii)” Basically,

n∑
j=0

(
n

j

)
−

n∑
j=0

(−1)j
(
n

j

)
= 2n(

n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
−
[(

n

0

)
−
(
n

1

)
+ · · · ±

(
n

n

)]
= 2n

2

n∑
j odd

(
n

j

)
= 2n

n∑
j odd

(
n

j

)
= 2n−1

(e)(iv) Yeah just take (i)-(iii) or (i)+(ii)
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(a)
First, observe that:

(1 + x)1+m =
n+m∑
i=0

(
n+m

i

)
xi

Now, let’s look at an equivalent formulation using the fact that (1 + x)n+m = (1 + x)n(1 + x)m:

(1 + x)n(1 + x)m =

n∑
i=0

(
n

i

)
xi ×

m∑
i=0

(
m

i

)
xi

=

n+m∑
i=0

φix
i

By Lemon 1, convolution, φi is:

φi =

i∑
k=0

(
n

i

)(
m

i− k

)
Therefore, by substituting this back into our second sum above, we get

n∑
i=0

φix
i =

n+m∑
i=0

i∑
k=0

(
n

i

)(
m

i− k

)
xi

So,
n+m∑
i=0

(
n+m

i

)
xi =

n+m∑
i=0

i∑
k=0

(
n

i

)(
m

i− k

)
xi

Since we know that for any polynomials to be equal, they must have identical coefficients for each
xi. Thus, by comparing coefficients;(

n+m

i

)
=

i∑
k=0

(
n

i

)(
m

i− k

)
(
n+m

ℓ

)
=

ℓ∑
k=0

(
n

i

)(
m

ℓ− k

)
You can choose not to use Lemon 1 (directly) by expanding (1+x)n and (a+x)m then factorising the powers, using

a similar argument as Lemon 1

Q.E.D. ■
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(b)

Notice that
n∑

k=0

(
n

k

)2

=

n∑
k=0

(
n

k

)(
n

k

)
=

n∑
k=0

(
n

k

)(
n

n− k

)
So, we can apply our identity from (a) now;

n∑
k=0

(
n

k

)(
n

n− k

)
=

(
2n

n

)
Q.E.D. ■

Answer
(a) The answer basically said ”its obvious lmao” But the proof I wrote should be alright.
(b) Yeah its good :D

5.

(a)

We easily see that the cases where n = 0 holds true;

0∑
i=0

ri = r0 = 1 =
1− r0+1

1− r

Now assume there exists some n such that
n∑

i=0

ri = 1−rn+1

1−r holds true. Then, we shall see that it

also holds for n+ 1:

n+1∑
i=0

ri = rn+1 +

n∑
i=0

ri

= rn+1 +
1− rn+1

1− r
(Since it holds for some n)

=
(1− r)rn+1 + 1− rn+1

1− r

=
rn+1 − rn+2 + 1− rn+1

1− r

=
1− r(n+1)+1

1− r

So, by induction,
n∑

i=0

ri = 1−rn+1

1−r holds true for all n ∈ N0 and all r ̸= 1.

Q.E.D. ■

(b)
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Let S =
n∑

i=0

ri and Sr =
n+1∑
i=1

ri. Now, we can do a simple substitution:

Sr =

n+1∑
i=1

ri =

n∑
i=0

ri − 1 + rn+1

S(r − 1) = −1 + rn+1

S(1− r) = 1− rn+1

S =
1− rn+1

1− r

Answer
Its so trivial that there’s no answer inside lol

23



6.

(i)

We know that by The Binomial Theorem,

(k + 1)4 − k4 = 4k3 + 6k2 + 4k + 1

Notice that when we use k + 1 instead of k,

(k + 2)4 − (k + 1)4 = 4(k + 1)3 + 6(k + 1)2 + 4(k + 1) + 1

This means that when we sum them up, the (k + 1)4 term will be removed:

(k + 1)4 − k4 + (k + 2)4 − (k + 1)4 = 4k3 + 6k2 + 4k + 1

+ (k + 1)3 + 6(k + 1)2 + 4(k + 1) + 1

(k + 2)4 − k4 = 4[k3 + (k + 1)3] + 6[k2 + (k + 1)2]2 + 4[k + (k + 1)] + 2

So, summing up k from 1 to n;

n∑
k=1

(k + 1)4 − k4 =

n∑
k=1

4k3 + 6k2 + 4k + 1

(n+ 1)4 − 1 = 4

[
n∑

k=1

k3

]
+ 6

[
n∑

k=1

k2

]
+ 4

[
n∑

k=1

k

]
+ n
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Note that -1 comes from the first term (where k = 1) since there are no other terms with +1 (on the left hand side),

while (n+1)4 comes from the last term where there is no no case where k = n+1 in which −(n+1)4 would ’cancel’

it away, as n is the upper bound of the summation. (If you haven’t noticed, the n on the right hand side is the result

of
∑n

k=0 1 = n.)

Therefore, using the fact that
n∑

k=1

k = n(n+1)
2 and

n∑
k=1

k2 = n(n+1)(2n+1)
6 ;

(n+ 1)4 − 1 = 4

[
n∑

k=1

k3

]
+ 6

[
n∑

k=1

k2

]
+ 4

[
n∑

k=1

k

]
+ n

(n+ 1)4 − 1 = 4

[
n∑

k=1

k3

]
+ 6

[
n(n+ 1)(2n+ 1)

6

]
+ 4

[
n(n+ 1)

2

]
+ n

n∑
k=1

k3 =
(n+ 1)4 − n− 1− n(n+ 1)(2n+ 1)− 2n(n+ 1)

4

=
(n4 + 4n3 + 6n2 + 4n+ 1)− n− 1− (2n3 + 3n2 + n)− (2n2 + 2n)

4

=
n4 + 2n3 + n2

4

=
n2(n+ 1)2

4

(ii) Just repeat the same procedure :p

(iii)

We see that:
1

(k + 1)2
=

1

k
− 1

k + 1

Notice that, again, for k + 1;
1

(k + 2)2
=

1

k + 1
− 1

k + 2

Similar to that of in (i) and (ii), when we add these two together, we get:

1

(k + 1)2
+

1

(k + 2)2
=

1

k
− 1

k + 1
+

1

k + 1
− 1

k + 2

=
1

k
− 1

k + 2

So, for
n∑

k=1

1
k(k+1) ;

n∑
k=1

1

k(k + 1)
= 1− 1

n+ 1

=
n

n+ 1

(iv)

We first see that:
2k + 1

k2(k + 1)2
=

1

k2
− 1

(k + 1)2
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Again, for k + 1 instead of k,

2(k + 1) + 1

(k + 1)2(k + 2)2
=

1

(k + 1)2
− 1

(k + 2)2

Similarly to previous parts, when we sum them up,

2k + 1

k2(k + 1)2
+

2(k + 1) + 1

(k + 1)2(k + 2)2
=

1

k2
− 1

(k + 1)2
+

1

(k + 1)2
− 1

(k + 2)2

=
1

k2
− 1

(k + 2)2

So, now for
n∑

k=1

2k+1
k2(k+1)2 ;

n∑
k=1

2k + 1

k2(k + 1)2
= 1− 1

(n+ 1)2

Answer
6.(i) Should be right (ii) Yeah just repeat lmao
(iii) I guess shld be ok (iv) Yah seems correct

26



7.
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By The Binomial Theorem,

(k + 1)p+1 − kp+1 =

p∑
i=0

(
p+ 1

i

)
ki

We see that when k + 1 is used instead of k,

(k + 2)p+1 − (k + 1)p+1 =

p∑
i=0

(
p+ 1

i

)
(k + 1)i

Notice that

HH2
p+1 − 1

p+1
+HH3

p+1 −HH2
p+1

+ZZ· · · +
hhhhhh(n − 1 + 1)

p+1 −
XXXX(n − 1)

p+1
+ (n + 1)

p+1 −XXn
p+1

=
(p + 1

1

)
[1

p
+ 2

p
+ · · · + (n − 1)

p
+ n

p
] +
(p + 1

2

)
[1

p−1
+ 2

p−1
+ · · · + (n − 1)

p−1
+ n

p−1
] + · · ·+(p + 1

p + 1

)
[1 + 2 + · · · + (n − 1) + n] + n

⇒ (n + 1)
p+1 − 1 =

p∑
i=0

[(p + 1

i

)( n∑
k=1

k
i

)]

Therefore, using this fact;

(n+ 1)p+1 − 1 =

p∑
i=0

[(
p+ 1

i

)( n∑
k=1

ki

)]

=

(
p+ 1

p

) n∑
k=1

kp +

p−1∑
i=0

[(
p+ 1

i

)( n∑
k=1

ki

)]

= (p+ 1)

n∑
k=1

kp +

p−1∑
i=0

[(
p+ 1

i

)( n∑
k=1

ki

)]

⇒
n∑

k=1

kp +
1

p+ 1
=

(n+ 1)p+1 −
p−1∑
i=0

[(
p+1
i

)( n∑
k=1

ki
)]

p+ 1

=

p+1∑
i=0

[(
1

p+ 1

)(
p+ 1

i

)
np+1−i

]
−

p−1∑
i=0

[(
1

p+ 1

)(
p+ 1

i

)( n∑
k=1

ki

)]

=

p+1∑
i=0

[(
1

p+ 1

)(
p+ 1

i

)
np+1−i

]
+

p−1∑
i=0

[(
1

p+ 1

)(
p+ 1

i

)
ni

]

−
p−1∑
i=0

[(
1

p+ 1

)(
p+ 1

i

)(n−1∑
k=1

ki

)]

=
np+1

p+ 1
+ (p+ 1)np +

p−1∑
i=0

[(
1

p+ 1

)(
p+ 1

p+ 1− i

)
ni

]

+

p−1∑
i=0

[(
1

p+ 1

)(
p+ 1

i

)
ni

]
−

p−1∑
i=0

[(
1

p+ 1

)(
p+ 1

i

)(n−1∑
k=1

ki

)]

=
np+1

p+ 1
+ (p+ 1)np +

p−1∑
i=0

[(
1

p+ 1

)[(
p+ 1

p+ 1− i

)
+

(
p+ 1

p+ 1− i

)]
ni

]

−
p−1∑
i=0

[(
1

p+ 1

)(
p+ 1

i

)(n−1∑
k=1

ki

)]
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So,

⇒
n∑

k=1

kp =
np+1

p+ 1
+ (p+ 1)np +

p−1∑
i=0

[(
1

p+ 1

)[(
p+ 1

p+ 1− i

)
+

(
p+ 1

p+ 1− i

)]
ni

]

−
p−1∑
i=0

[(
1

p+ 1

)(
p+ 1

i

)(n−1∑
k=1

ki

)]
− 1

p+ 1

Answer
Should be correct even though Nope wrong; Other than the fact that there might have been a care-

less mistake turning − into +,
p−1∑
i=0

[(
1

p+1

) (
p+1
i

)(n−1∑
k=1

ki
)]

still involves n and is not fully simplified

as necessary. Which is also why the coefficient of np is wrong for instance. (Even if I derived a cor-
rect formula, I forgot to prove the formula) Answer used induction instead to prove the statement.
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13.

(a)

Assume that
√
3 is a rational number, i.e.:

√
3 =

a

b
, where gcd(a, b) = 1, and a ∈ N0, b ∈ N⩾1

3 =
a2

b2

3b2 = a2

This means that 3 is a factor of a2. Since 3 is a prime number, it cannot be formed by a combination
of two other factors of a. Therefore, 3 is a factor of a as well:

a2 = (3k)2 = 9k2 for some k ∈ N0

⇒ 3b2 = 9k2

b2 = 3k2

Thus, by the same reasoning as shown above for a, 3 is also a factor of b, meaning gcd(a, b) ⩾ 3.
However, this contradicts our assumption that

√
3 is a rational number and can be expressed as a

b

such that gcd(a, b) = 1. So,
√
3 must not be rational and is instead irrational.

Note to self, now a2

b2
= 9k2

3k2 = 3
1
which supports what we know, that 3 is a prime number. Also, a

b
= 3k√

3k
= 3

√
3k

3k
=

√
3

1
, again supporting what we know that

√
3 is irrational.
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Assume that
√
5 is a rational number, i.e.:

√
5 =

a

b
, where gcd(a, b) = 1, and a ∈ N0, b ∈ N⩾1

5 =
a2

b2

5b2 = a2

This means that 5 is a factor of a2. Since 5 is a prime number, it cannot be formed by a combination
of other factors of a. Therefore, 5 is a factor of a as well:

a2 = (5k2) = 25k2 for some k ∈ N0

⇒ 5b2 = 25k2

b2 = 5k2

Thus, by the same argument as shown above for a having 5 as its factor, b must also have 5 as a
factor in this case, meaning that gcd(a, b) ⩾ 5. However, this contradicts our assumption that that√
5 is a rational number and as such can be expressed as a

b with gcd(a, b) = 1. So,
√
5 must not be

rational, i.e. it must be irrational.

Assume that
√
6 is a rational number, i.e.:

√
6 =

a

b
, where gcd(a, b) = 1, and a ∈ N0, b ∈ N⩾1

6 =
a2

b2

6b2 = a2

The prime factorisation of 6 = (2)(3) and 6 is a factor of a. Since a has identical factors with itself
and the prime factors of 6 are not repeated (i.e. they are of power 1), a must contain 6 as a factor.
(It is clearly impossible that one of the two a’s will have a factor of 2 (without having a factor of 3
as well), vice versa)

a2 = (6k)2 = 36k2 for some k ∈ N0

⇒ 6b2 = 36k2

b2 = 6k2

Thus, by the same argument as shown above for the case of 6 being a factor of a, 6 must be a
factor of b as well. This means that gcd(a, b) ⩾ 6. However, this contradicts our assumption that
gcd(a, b) = 1. So,

√
6 must not be rational, i.e. it is irrational.

31



(b)

Assume that 3
√
2 is rational, i.e.:

3
√
2 =

a

b
, where gcd(a, b) = 1, and a ∈ N0, b ∈ N⩾1

2 =
a3

b3

2b3 = a3

Since 2 is a prime number, it cannot be formed by a combination of other factors of a (besides 2
itself) such that 2 is a factor of a3, meaning 2 must be a factor of a as well.

a3 = (2k)3 = 8k3, for some k ∈ N0

⇒ 2b3 = 8k3

b3 = 4k3

Thus, 4 must be a factor of b by a similar argument as above for showing 2 is a factor of a, i.e.
that:
As there exists no possible combination of factors of b (besides with 4 itself) such that 4 is a factor of b3

This means that gcd(a, b) ⩾ 2. However, this contradicts our assumption that 3
√
2 is a rational

number, which can be expressed as a
b where gcd(a, b) = 1. So, 3

√
2 must not be rational, i.e. it must

be irrational.

Just the same procedure to show 3
√
3 is irrational.

Answer
Yah seems correct.
14.
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(a)

Assume that
√
2 +

√
6 is irrational, i.e. that:

√
2 +

√
6 =

a

b
, where a ∈ N0, b ∈ N⩾1

8 + 2
√
2
√
6 =

a2

b2

8 + 4
√
3 =

a2

b2

√
3 =

a2

4b2
− 2 =

a2 − 8b2

4b2

We easily see that a2,−8b2, 4b2 are all natural numbers, since they are (natural) multiples of natural

numbers a, b. Therefore, this would mean that
√
3 is rational as a2−8b2

4b2 is a fraction of 2 integers.

However, we know that
√
3 is actually irrational.

So, since
√
2+

√
6 being rational would imply

√
3 is rational, which contradicts the fact that

√
3 is

actually irrational, thus
√
2 +

√
6 must be irrational.

(b)

Assume that
√
2 +

√
3 is rational, i.e. that:

√
2 +

√
3 =

a

b
, where a ∈ N0, b ∈ N⩾1

5 + 2
√
2
√
3 =

a2

b2

√
6 =

a2 − 5b2

2b2

We again easily see that a2, 5b2, 2b2 are all natural numbers, since they are (natural) multiples of

natural numbers a, b. Therefore, this would mean that
√
6 is rational as a2−5b2

2b2 is a fraction of 2

integers. However, we know that
√
6 is actually irrational.

So, since
√
2 +

√
3 would imply that

√
6 is rational, which contradicts the fact that

√
6 is actually

irrational, thus
√
2 +

√
3 must be irrational.

Answer
Yah seems correct.
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15.

(a)

Let x = p+
√
q where p, q ∈ Q and m, k ∈ N0,

Now, for xm,

xm = (p+
√
q)m

=

m∑
k=0

(
m

k

)
pm−k√q

k

=

m∑
k=0

(
m

k

)
pm−k +

m∑
k even

(
m

k

)
q

1
2k +

m∑
k odd

(
m

k

)
√
q
k

=

m∑
k=0

(
m

k

)
pm−k +

m∑
k even

(
m

k

)
q

1
2k +

[
m∑

k odd

(
m

k

)
√
q
k−1

]
√
q

So, we thus notice 3 facts as
(
m
k

)
is a natural number for all m, k:

1. m−k is an integer, and hence pm−k is rational too. This means that
(
m
k

)
pm−k and

m∑
k=0

(
m
k

)
pm−k

are rational too.

2. For any even k, 1
2k ∈ N0, thus, q

1
2k and

m∑
k even

(
m
k

)
q

1
2k are rationals.

(It should be easy to see that
m∑

k=0

(m
k

)
pm−k +

m∑
k even

(m
k

)
q

1
2
k is a sum of 2 rationals and must be rational itself.)

3. Given any odd k, k− 1 is an even natural number. Therefore,
√
qk−1 = q

k−1
2 is again q raised

to some natural power, meaning
√
qk−1 is rational. Thence,

m∑
k odd

(
m
k

)√
qk−1 is rational too.

Therefore, we have shown that xm = a+ b
√
q, where

a =
m∑

k=0

(
m
k

)
pm−k +

m∑
k even

(
m
k

)
q

1
2k and b =

∑m
k odd

(
m
k

)√
qk−1

which are both rational.
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Note to self: Btw if you’re reading this again don’t forget why the odd can’t necessarily be changed to even for
all k. (Specifically for even m)
E.g.: Let m = 4

m∑
k odd

(m
k

)√
qk−1 =

∑
k∈{1,3}

(4
k

)√
qk−1 =

(4
0

)
+

(4
2

)
q

̸=
∑

k∈{0,2,4}

(4
k

)√
qk =

(4
0

)
+

(4
2

)
q +

(4
4

)
q2

(b) Just repeat (a) lol

Answer
Yeah shld be alright, but another way to do it which is easier is just to use induction

16.

(a) Let m,n ∈ N⩾1 such that m2/n2 < 2.
We now observe that since m,n ⩾ 1:

m+ 2n > 3 m+ n > 2

(m+ 2n)2 > 9 (m+ n)2 > 4

Therefore,

(m+ 2n)2

(m+ n)2
> 2

1

4

⇒ (m+ 2n)2

(m+ n)2
> 2

(c)

If m/n <
√
2, then

√
2 − m

n > 0. Now, let p, q ∈ N⩾1 such that p
q <

√
2 − m

n . We can now obtain
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our m′ and n′ we want;
m

n
<

m

n
+

p

q
=

mq + np

nq
<

√
2

It is trivial to see that mq + np, nq ∈ N⩾1 as they are just sums and products of natural numbers.
So, our m′ = mq + np and our n′ = nq.

Proof 2:
We first take the average of m/n and

√
2;

1

2

(m
n

+
√
2
)

We obviously know that
√
2 is irrational and so we can replace it with some m

n < p
q <

√
2, where

p, q ∈ N⩾1, so that the m′ and n′ are natural numbers:

m′

n′ =
1

2

(
m

n
+

p

q

)
=
mq + np

2nq

Now, we see that:

m

n
<

p

q

m

n
<

p

q

m

n
+

p

q
< 2

(
p

q

)
2
(m
n

)
<

m

n
+

p

q

1

2

(
m

n
+

p

q

)
<

p

q

m

n
<

1

2

(
m

n
+

p

q

)
m′

n′ <
p

q
<

√
2

m

n
<

m′

n′

Therefore, this again satisfies our other condition that m
n < m′

n′ = mq+np
2nq <

√
2.

Q.E.D. ■
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Answer
Should be right

Spivak’s Calculus Answer Book:
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Yeu Jiunn Integration Area Qns

Since R(y) is a polynomial of degree 3, i.e.: R(y) = a1x+a2x
2+a3x

3 where ai ∈ R, and B(y) = R′′(y),
the degree of B(y) must be 3-2=1. This means that B(y) = my + k, for some m, k ∈ R.

We know 2 points, D and E, on B(y), which we can use to find m and k:

m =
10− 1(
2− 1

2

) = 6

k = 10− 6(2) = −2

Therefore, we see that B(y) = 6y − 2. We know point A is a stationary point of P (y), i.e. when
P ′(y) = 66(y − 2) = 0. Using this, we can find the coordinates of A

P ′(y) = 66(y − 2) = 0

y = 2

x = 33(2− 2)2 = 0

⇒A(0, 2)

B(y) = R′′(y), so by integrating B(y) twice and using the fact that point A(0, 2) is a stationary
point of R(y), i.e.: R′(2) = 0 and R(2) = 0 :

R′(y) =

∫
B(y) dy =

∫
6y − 2 dy

= 3y2 − 2y + c1

R′(2) = 0

8 + c1 = 0

c1 = −8

⇒ R′(y) = 3y2 − 2y − 8

R(y) =

∫
R′(y) dy =

∫
3y2 − 2y − 8 dy

= y3 − y2 − 8y + c2

R(2) = 0

−12 + c2 = 0

c2 = 12

⇒ R(y) = y3 − y2 − 8y + 12

To find the coordinates of C, since C is the point at which R(y) = B(y),

R(y) = B(y)

y3 − y2 − 8y + 12 = 6y − 2

y3 − y2 − 14y + 14 = 0
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Let φ(y) = y3 − y2 − 14y + 14, now notice that;

φ(1) = 13 − 12 − 14 + 14 = 0

Thus, by The Factor Theorem, (y − 1) is a factor of φ(y). We continue solving for the coordinates
of C,

y3 − y2 − 14y + 14 = 0

(y − 1)(y2 − 14) = 0

y − 1 = 0 OR y2 − 14 = 0

y = 1 OR (y +
√
14)(y −

√
14) = 0

OR y = ±
√
14

By the graph given, yc > 0, so yc ̸= −
√
14, and yc < P (xc);

yc =
√
14 yc = 1

xc = 6
√
14− 2 xc = 6− 2 = 4

P (xc) = 33(6
√
14− 4)2 = 11233 33(2)2 = 132

(nearest whole no.)

Obviously, 1 < 132 while −
√
14 ≮ 11233 (nearest whole no.). We easily see that C(4, 1). As for the

coordinate of B, we repeat a similar procedure since it is the intersection between P (y) and B(y);

P (y) = B(y)

33(y − 2)2 = 6y − 2

33y2 − 138y + 134 = 0

y =
−(−138)±

√
(−138)2 − 4(33)(134)

2(33)

y = 2
1

11
±

√
339

33

Once again, utilising the graph given we see that there are two intersections between P (y) and
B(y), and B has a lower value for its y-coordinate compared to the other intersection point. Thus,

yB = 2 1
11 −

√
339
33 and xB = 6

(
2 1
11 −

√
339
33

)
− 2 = 10 6

11 −
2
√
339
11 , B

(
10 6

11 − 2
√
339
11 , 2 1

11 −
√
339
33

)
We

can finally compute the shaded area: (Goddamn finally after 10 mil-)

These are the coordinates of the points we need: A(0, 2), B
(
10 6

11 − 2
√
339
11 , 2 1

11 −
√
339
33

)
, C(4, 1).
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∫ 2

2 1
11−

√
339
33

P (y) dy +
1

2

(
10

6

11
− 2

√
339

11
+ 4

)(
2
1

11
−

√
339

33
− 1

)
−
∫ 2

1

R(y) dy

=

∫ 2

2 1
11−

√
339
33

33(y − 2)2 dy +

(
7
3

11
−

√
339

11

)(
1
1

11
−

√
339

33

)
−
∫ 2

1

y3 − y2 − 8y + 12 dy

=11
[
(y − 2)3

]2
2 1

11−
√

339
33

+ 8
105

121
− 116

√
339

363
−
[
y4

4
− y3

3
− 4y2 + 12y

]2
1

=11

(2− 2)3 −

(
2
1

11
−

√
339

33
− 2

)3
+ 8

105

121
− 116

√
339

363
− 1

5

12

=11

(1 1

11
−

√
339

33

)3
+ 8

105

121
− 116

√
339

363
− 1

5

12

=12− 1
23

121

√
339 + 11

25

121
+

113
√
339

1089
+ 8

105

121
− 116

√
339

363
− 1

5

12

=30
955

1452
− 1531

√
339

1089

Well im no computer, not gonna stare till this answer becomes right.
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9.

We know that set A must contain n0 as stated in the question. But let’s assume that set A does
not contain all natural numbers greater than n0.

Let the set of all natural numbers, n > n0, such that n /∈ A, be S. Then, there must be some
smallest natural number, ns, in S. The more technical construction of S is: Using the Axiom
Schema Of Specification,

∀n(n ∈ S ⇔ n ∈ N0 ∧ n /∈ A)

Thereafter, we know that ns − 1 ∈ A. (n0 is always in A, so the smallest possible n in S is n0 + 1,
in which case this still trivially holds)

We know that the set A contains k + 1 whenever it contains k, and ns − 1 is contained in A, thus
ns must be contained in A as well.

However, by our construction of the set S, it contains all natural numbers not in A, i.e. they are
disjoint sets. So this creates a contradiction because n0 cannot be in A and S at the same time.

Thence, the set A must contain all natural numbers greater than or equal to n0.

Answer
Should be correct

11.

The logical statement of the ordinary principle of induction is that:
Let P (n) be some predicate, k, n ∈ N0

(P (1) ∧ ∀k[P (k) ⇒ P (k + 1)]) ⇔ ∀nP (n)

While that of the principle of complete induction is:(
P (1) ∧ ∀k

[(
k∧

i=1

P (i)

)
⇒ P (k + 1)

])
⇔ ∀nP (n)

We see that;

(P (1) ∧ ∀k[P (k) ⇒ P (k + 1)]) ⇔

(
P (1) ∧ ∀k

[
k∧

i=1

[P (i) ⇒ P (i+ 1)]

])
(
P (1) ∧ ∀k

[
k∧

i=1

P (i) ⇒ P (k + 1)

])

Therefore since the ordinary principle of induction, which we know to be true, implies the principal
of complete induction, this principle of complete induction must be true as well

Answer
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Let A be a set such that 1 ∈ A, and n+1 ∈ A iff 1, 2, · · · , n ∈ A, while B be a set such that k ∈ B
iff 1, 2, · · · , k ∈ A.

Notice that 1 ∈ B trivially since 1 ∈ A.

Now suppose there exists some k ∈ B, meaning 1, 2, · · · , k ∈ A. So, we see that k + 1 ∈ A. Then,
1, 2, · · · , k, k + 1 ∈ A, thus k + 1 ∈ B.

By the ordinary principle of induction, B = N⩾1, therefore, A = N⩾1

Or logically, let n, k ∈ N⩾1, and A,B be sets such that:

1 ∈ A ∧ (n+ 1 ∈ A ⇔ 1, 2, · · · , n ∈ A)

k ∈ B ⇔ 1, 2, · · · , k ∈ A

We see that 1 ∈ B since 1 ∈ A ⇔ 1 ∈ B.

Now, suppose that there exists some k such that k ∈ B, then k + 1 ∈ B must be true, because:

k ∈ B ⇔ 1, 2, · · · , k ∈ A

⇔ k + 1 ∈ A

⇔ 1, 2, · · · , k, k + 1 ∈ A

⇔ k + 1 ∈ B

By the ordinary principle of induction, B = N⩾1, so A = N⩾1;

B = N⩾1 ⇔ (x ∈ N⩾1 ⇒ x ∈ B)

⇔ [x ∈ N⩾1 ⇒ (x ∈ B ⇔ 1, 2, · · · , x ∈ A)]

⇔ (x ∈ N⩾1 ⇒ 1, 2, · · · , x ∈ A)

⇔ (x ∈ N⩾1 ⇒ x ∈ A)

⇔ A = N⩾1

17.
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(a)

Let’s start off by looking at n = 2, obviously it has a prime factorisation of just the product of a
single number, 2 itself.

Suppose that there exists some natural number n ⩾ 2, such that all natural numbers m ⩽ n have
prime factorisations. Now consider the case of n+ 1, and notice that:

1. There is either some m1 such that m1 divides n+ 1, which would mean that n+ 1 = m1m2.
Since we know all m ⩽ n have prime factorisations, this means that n + 1 is equal to the
product of the prime factorisations of m1 and m2, i.e. It is a product of prime numbers. So
n+ 1 must have a prime factorisation as well.

2. Or there exists no m that divides n+ 1, meaning n+ 1 is prime, and its prime factorisation
is simply itself.

Therefore, n+ 1 must have a prime factorisation. So, by (complete) induction we have shown that
all natural numbers n ⩾ 2 have prime factorisations.

(b)

Not using the fact:

Let n be a natural number which cannot be expressed as a square of any natural number, m2.
Assume that

√
n is rational,
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√
n =

a

b
, for some a ∈ N0, b ∈ N⩾1; gcd(a, b) = 1

n =
a2

b2

nb2 = a2

Clearly, n is a factor of a2. Therefore, by our assumption, there exists no natural number m such
that nb2 = (mb)2 = a2. i.e: No natural number m exists such that a = mb, so n must be a factor
of a, in order for a to be a natural number such that n to be a factor of a2 as shown. After we
conclude this fact;

a = nk for some k ∈ N0

nb2 = (nk)2

nb2 = n2k2

b2 = nk2

By the same argument as above, we see that n must also be a factor of b. Thence, gcd(a, b) ⩾ n.
However, this contradicts our assumption that n is rational and thus can be expressed as a

b such
that gcd(a, b) = 1. So, for all natural numbers, n, such that it cannot be expressed as a square of
any natural number,

√
n must be irrational.

Using the fact:

Let n be a natural number such that
√
n be rational, i.e.:

√
n =

a

b
, for some a ∈ N0, b ∈ N⩾1; gcd(a, b) = 1

n =
a2

b2

nb2 = a2

Since we know prime factorisation is unique (by the information given), and nb2 = a2, this means
that nb2 and a2 must have the same prime factorisation, comprising of exactly the same prime
factors of the same powers. Notice that the prime factorisation of a2 and b2 must both consist of
prime factors all of even powers. Therefore, the prime factorisation of n must also consist of prime
factors of power 2, i.e.: there is some natural number n = m2.

(Because since all prime factors of b2 have even powers, if n had prime factor(s) of odd power(s), nb2

would have prime factor(s) of odd power(s) which contradicts the fact that all prime factors of a2 have even

powers.)

(Prime factors and powers here refer to that of in their prime factorisations obviously)

Conversely, if there exists some natural number m such that n = m2,
√
n =

√
m2 = m which is

trivially rational.

Thus, we can conclude that
√
n is a rational number iff there exists some natural number m such

that n = m2, and is irrational otherwise.
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(c)

Let n, k be natural numbers such that k
√
n is rational, i.e.:

k
√
n =

a

b
, for some a ∈ N0, b ∈ N⩾1; gcd(a, b) = 1

n =
ak

bk

nbk = ak

We know that prime factorisation is unique and nbk = ak, this means that nbk and ak have the
same prime factorisation, comprising of exactly the same prime factors, with the same powers each
of which is some factor of k.

Since the prime factors of bk already have powers which are factors of k, therefore, this must also
be true for n (in order for nbk = ak), which would mean n = mk for some natural number m.

To see this, consider when n has a prime factor not of factor k, then nbk would also have some prime factor

not being a factor of k. But this would violate what we said above that nbk = ak (that ak, and hence nbk,

must have prime factors of powers which are factors of k)

Conversely, let n,m, k be natural numbers such that n = mk. Rather easily, we see that k
√
n =

k
√
mk = m which is a rational number.

So, we can conclude that k
√
n is rational iff n = mk for some natural number, m, and is irrational

otherwise.

(d) × Good Try still! :)

Assume that there are only n number of primes.

Let the set I = {i|i ∈ N ∧ i ⩽ n}. Now, taking the product of all primes pn and adding 1,(∏
i∈I

pi

)
+ 1

Given some arbitrary kth prime number, pk, where 1 ⩽ k ⩽ n;

(∏
i∈I

pi

)
+ 1

pk

=

 ∏
i∈I\{k}

pi

+
1

pk

∏
i∈I\{k}

pi is a natural number, while 1
pk

is an noninteger rational number. So, their sum is a nonin-

teger too. Therefore, as our selection of pk was arbitrary, this means that our

(∏
i∈I

pi

)
+1 does not

have any divisors (other than 1 and itself), meaning it must be prime! However, this contradicts
our assumption that there are only a finite n number of primes. Thence, there must be an infinite
number of prime numbers!

Answer
(a) Yeah should be good (b) Should be ok (c) Should be good too (d) Wrong rip, note that
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(∏
i∈I

pi

)
+ 1 is not necessarily prime. But given a collection of n prime numbers, the (n + 1)th

prime number is less than or equal to

(∏
i∈I

pi

)
+ 1.

Good try nonetheless!
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18. (Rational Root Theorem)

(a)

Assume there exists some rational noninteger x such that it satisfies the equation given, i.e. x = b
c

for some b ∈ Z\{0} and c ∈ Z\{0, 1,−1} such that b ̸= c and gcd(b, c) = 1, then:

xn +

n−1∑
i=0

aix
i = 0

(
b

c

)n

+

n−1∑
i=0

ai

(
b

c

)i

= 0

bn

cn
+

n−1∑
i=0

aib
i

ci
= 0

bn +

n−1∑
i=0

aib
icn−i = 0

bn = −
n−1∑
i=0

aib
icn−i

= −a0c
n − a1bc

n−1 − · · · − an−1b
n−1c

= c(−a0c
n−1 − a1bc

n−2 − · · · − an−1b
n−1)

We see that bn is equal to c times an integer which means c|bn.
(a0cn−1 + a1bcn−2 + · · ·+ an−1bn−1 is an integer as its just a sum of products of integers)

Since we know gcd(b, c) = 1, c is not just b to some natural power, this means that c|b in order
for c|bn. However, this leads us to the conclusion that gcd(b, c) ≥ c > 1 (as |c| > 1), obviously
contradicting the assumption that gcd(b, c) = 1.

So, there must not exist any rational noninteger x that satisfies the given equation, i.e.: the x’s
that satisfy the given equation must be either irrational or an integer.

Equivalently, x is irrational unless x is an integer.

It is a generalisation of 17. as 17. uses an argument of natural numbers only, while we use an
argument of all real numbers.

Q.E.D. ■

(b)
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Let x =
√
6−

√
2−

√
3, we see that;

x2 = 11 + 2
√
6− 6

√
2− 4

√
3

x2 − 11 = 2(
√
6− 3

√
2− 2

√
3)

(x2 − 11)2 = x4 − 22x2 + 121 = 144− 48
√
2− 48

√
3 + 48

√
6

x4 − 22x2 − 23 = 48(
√
6−

√
2−

√
3)

x4 − 22x2 − 48x− 23 = 0

Since a monic polynomial with the root of x =
√
6−

√
2−

√
3 and integer coefficients exists, as well

as that
√
6 −

√
2 −

√
3 is obviously not an integer, by 18.(a), we know that

√
6 −

√
2 −

√
3 must

certainly be irrational.

(c) Teach me your ways, master. (I couldn’t solve this myself rip) Math Discord, Drake: (I phrased
this myself but yeah the main crucial parts come frm the disc)

Let x =
√
2 + 3

√
2. Now we see that:

x−
√
2 =

3
√
2

(x−
√
2)3 = 2

x3 − 3
√
2x2 + 6x+ 2

√
2 = 2

x3 + 6x− 2 = (3x2 − 2)
√
2

(x3 + 6x− 2)2 = 2(3x2 + 2)2

x6 + 12x4 − 4x3 + 36x2 − 24x+ 4 = 2(9x4 + 12x2 + 4)

x6 + 12x4 − 4x3 + 36x2 − 24x+ 4 = 18x4 + 24x2 + 8

x6 − 6x4 − 4x3 + 12x2 − 24x− 4 = 0

Therefore, we have found a monic polynomial with integer coefficients which has
√
2 + 3

√
2 as its

root, meaning that by 18.(a),
√
2 + 3

√
2 must either be an integer or irrational number. Of course,√

2 + 3
√
2 is not an integer, so it must be an irrational number.

Answer
Should be correct! :D
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19.

In the cases where h < 1, We see easily the inequality holds true for n = 0:

(1 + h)0 = 1 = 1 + 0h

(1 + h)0 ⩾ 1 + 0h

Suppose that the inequality is true for some n ∈ N0, then it holds too for n+ 1;

(1 + h)n ≥ 1 + nh

(1 + h)n+1 ≥ (1 + nh)(1 + h)

(1 + h)n+1 ≥ 1 + nh+ h+ nh2 ⩾ 1 + nh+ h as nh2 ≥ 0

(1 + h)n+1 ≥ 1 + nh+ h+ nh2 = 1 = (n+ 1)h

This is trivial in the cases of h > 0 as by The Binomial Theorem,

(1 + h)n = 1 + nh+

n∑
i=2

(
n

i

)
hi

Every term in the sum is greater than or equal to 0,
so (1 + h)n = 1 + nh+

∑n
i=2

(
n
i

)
hi ≥ 1 + nh.

Therefore, by induction, the inequality (1 + h)n ⩾ 1 + nh is true for all n ∈ N0.

Answer
Think it shld be correct, seems ok
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20.

In the case of n = 1,n = 2,n = 3, the formula holds true as:(
1+

√
5

2

)1
−
(

1−
√
5

2

)1
√
5

=
1 +

√
5−

(
1−

√
5
)

2
√
5

=
2
√
5

2
= 1 = a1

(
1+

√
5

2

)2
−
(

1−
√
5

2

)2
√
5

=
1 + 2

√
5 + 5−

(
1− 2

√
5 + 5

)
2
√
5

=
2
√
5

2
= 1 = a2

(
1+

√
5

2

)3
−
(

1−
√
5

2

)3
√
5

=

[
1+3

√
5+15+5

√
5−(1−3

√
5+15−5

√
5)

8

]
√
5

=
3
√
5 + 3

√
5 + 5

√
5 + 5

√
5

8
√
5

=
16

√
5

8
√
5

= 2

a3 = a2 + a1

= 1 + 1

= 2

=

(
1+

√
5

2

)3
−
(

1−
√
5

2

)3
√
5
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Suppose the statement holds for all k such that k ⩽ n where n ⩾ 3 and
k, n ∈ N0\{0, 1, 2}, then we shall see that it also holds for n+ 1;(

1+
√
5

2

)n+1

−
(

1−
√
5

2

)n+1

√
5

an+1 = an + an−1

=

(
1+

√
5

2

)n
−
(

1−
√
5

2

)n
√
5

+

(
1+

√
5

2

)n−1

−
(

1−
√
5

2

)n−1

√
5

=

(
1+

√
5

2

)n (
1 + 2

1+
√
5

)
−
(

1−
√
5

2

)n (
1 + 2

1−
√
5

)
√
5

=

(
1+

√
5

2

)n (
1− 2−2

√
5

4

)
−
(

1−
√
5

2

)n (
1− 2+2

√
5

4

)
√
5

=

(
1+

√
5

2

)n (
2+2

√
5

4

)
−
(

1−
√
5

2

)n (
2−2

√
5

4

)
√
5

=

(
1+

√
5

2

)n (
1+1

√
5

2

)
−
(

1−
√
5

2

)n (
1−

√
5

2

)
√
5

=

(
1+

√
5

2

)n+1

−
(

1−
√
5

2

)n+1

√
5

Therefore, by complete induction, for all n ∈ N⩾1, an =

(
1+

√
5

2

)n
−
(

1−
√

5
2

)n

√
5

Q.E.D. ■

Answer
Shld be correct
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Mr Cheng summation qns:

We see that the series’ denominators follows a pattern of 6+6+(6+2)+(6+4)+(6+6)+(6+8)+· · · .
Thence, we can derive our formula for any term, sn, of the given sequence of real numbers:

Notice that sn has denominators are made up of n number of sixes and
n−2∑
i=1

i number of twos. i.e.:

sn = 1

6n+2
n−2∑
i=1

i

.

Lemma 1
n∑

i=1

i =
n(n+ 1)

2

Proof:
We see that it trivially holds for n = 1,

1∑
i=1

i = 1 =
1(1 + 1)

2

Now, assume it holds for some n, then it also holds for n+ 1;

n+1∑
i=1

i = n+ 1 +

n∑
i=1

i

=
2n+ 2

2
+

n(n+ 1)

2

=
2n+ 2 + n2 + n

2

=
n2 + 3n+ 2

2

=
(n+ 1)(n+ 1 + 1)

2

Therefore, by induction,
n∑

i=1

i = n(n+1)
2 holds for all natural n.

Applying Lemma 1 onto our formula for sn,

sn =

(
6n+ 2

n−2∑
i=1

i

)−1

=

(
6n+ 2

[
(n− 2)(n− 2 + 1)

2

])−1

= (6n+ n2 + 3n+ 2)−1

= (n2 + 3n+ 2)−1

=
1

n2 + 3n+ 2

Now, all that is left is to find and proof an explicit formula for
m∑
i=1

sn:

Observe that we can decompose our 1
n2+3n+2 into two partial fractions:

1

n2 + 3n+ 2
=

1

(n+ 1)(n+ 2)
=

1

n+ 1
− 1

n+ 2
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If we add sn with sn+1, some terms cancel out:

1

(n+ 1)(n+ 2)
+

1

(n+ 1 + 1)(n+ 1 + 2)
=

1

n+ 2
− 1

n+ 2
+

1

n+ 2
− 1

n+ 3

=
1

n+ 1
− 1

n+ 3

This can be easily extended for
m∑
i=1

sn as we see;

m∑
i=1

sn =
1

2
− 1

3
+

1

3
− 1

4
+ · · ·+ 1

m
− 1

m+ 1
+

1

m+ 1
− 1

m+ 2

=
1

2
− 1

m+ 2

Proof:
This is trivially true in the case of m = 1,

m∑
i=1

1

i2 + 3i+ 2
=

1

1 + 3 + 2
=

1

6
=

1

2
− 1

1 + 2

Now, suppose that this is true for some natural m, then it also is true for m+ 1;

m+1∑
i=1

1

i2 + 3i+ 2
=

1

(m+ 1)2 + 3(m+ 1) + 2
+

m∑
i=1

1

i2 + 3i+ 2

=
1

m2 + 5m+ 6
+

1

2
− 1

m+ 2

=
1

(m+ 2)(m+ 3)
+

1

2
− m+ 3

(m+ 2)(m+ 3)

=
1

2
− m+ 2

(m+ 2)(m+ 3)

=
1

2
− 1

m+ 1 + 2

Therefore, by induction,
m∑
i=1

sn = 1
2 − 1

m+2 is true for all natural m.

We can FINALLY apply our last step!

∞∑
i=1

si = lim
m→∞

m∑
i=1

si

= lim
i→∞

1

2
− 1

m+ 2

=
1

2
− lim

m→∞

1

m+ 2

=
1

2
− 0

=
1

2

We can also prove limm→∞
1

m+2 = 0 using the epsilon-delta definition of the limit.

We need to find a choice for M such that;

∀ε∃M∀m
(
ε > 0 ∧m > M ⇒

∣∣∣∣ 1

m+ 2
− 0

∣∣∣∣ < ε

)
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Note that: ∣∣∣∣ 1

m+ 2
− 0

∣∣∣∣ = 1

m+ 2
< ε

Our choice of M is rather obvious here, we choose M = 1
ε∣∣∣∣ 1

m+ 2

∣∣∣∣ < |m+ 2| < 1

ε∣∣∣∣ 1

m+ 2
− 0

∣∣∣∣ < 1

ε

So, we have proven that

∀ε∃M∀m
(
ε > 0 ∧m >

1

ε
⇒
∣∣∣∣ 1

m+ 2
− 0

∣∣∣∣ < ε

)
So, we have shown and proven that the sum of this infinite series is 1

2 .

Find max(x2y) if x+y=2022.

Rearranging the above condition, we get y = −x+ 2022.

Substituting it into our max(x2y), we get that max(x2y) = max(−x3 + 2022x2).

Now let ϑ(x) = −x3 + 2022x2,

dϑ(x)

dx
= −3x2 + 4044x

To find the maximum value of ϑ(x), we take dϑ(x)
dx = 0:

dϑ(x)

dx
= 0

−3x2 + 4044x = 0

x(−3x+ 4044) = 0

x = 0 OR x = 1348

Rather trivially, we see that x = 0 must not be the maximum point:
ϑ(0) = 0 < ϑ(1348) = 1247280896

d2ϑ(x)

dx2
= −6x+ 4044

d2ϑ(x)

dx2

∣∣∣∣
x=1348

= −12132 < 0

We can now be certain that ϑ(1348) must be the maximum value of ϑ(x) = −x3 + 2022x2 = x2y.

So, max(x2y) = −(1348)3 + 2022(1348)2 = 1224728096.

C
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When you are in inline math mode (i.e. $ $) or your expression is very big in display mathmode
and you use the big symbols, with \sum {i = 0}ˆ{n} you’ll get:∑n

i=0 f(i)

But if you add in \limits, i.e. \sum\limits {i = 0}ˆ{n} , you get:

n∑
i=0

f(i)
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