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Conventions

The set N is either used to notate
Either {0,1,2,---}
Or {1,2,3,---}

To avoid confusion between the two conventions, we will use
No={0,1,2,---}

N>1 = {152737}

Which hopefully minimises ambiguity on this



Lemons

Lemon 1: Convolution (Actually called The Cauchy Product too) (Math Discord)
1.

Let F and G be functions, such that;

i=0
Now,
n+m
F(z)G(z) = Z CiT;
i=0
Where .
¢ = Z arbi—r
k=0
ie
n+m 1
F(z)G(z) = akbi—x;

0
n+m 1 .
(Or equivalently, F(x)G(x) = > > a; — kbkxl>
2.

Also, given Y1 ja; and > by

Where )
¢ = arb;_x
k=0
ie. '
n n n 1
(Z ai> (Z bi> = Z Z arbi_k
i=0 i=0 i=0 k=0

% Works not only for n € Ny but also for lim , i.e. infinite series.
n—oo



Lemon 2: Definition of sums using an index set (Math Discord)

Let I be an index set with ¢ € I and f(i) > 0 for all 4,

Zf(z) = sup{Zf(i) cJCINT ﬁnite}

i€l icJ
In the cases where f(i) can be smaller than 0,

You would have to specify a way of exhausting the index set using finite subsets, and the sum may
exist for some such choice, but it would be very dependent on this choice in general.
(|f] here means the outputs of the function f, or more precisely, elements of its range)

If | f| is summable, which requires that it is nonzero on a countable set,

(Countable means either finite or countably infinite here, including the empty set)

then the definition is to take an exhausting collection of finite sets and take the limit of the associated
finite sums.

Facts:

1. This limit exists!
2. This limit is independent of the choice of exhausting collection
(summability of |f| used here to prove both 1 and 2).

If | f| is not summable, then you do not have existence/independence, but you can sometimes still
talk about limits over a particular choice exhausting collection of finite subsets.
(This is analogous to summing things like 1 —1/2+1/3 —-1/4+---).

Also, something else noteworthy is that for a sum to be convergent, there can at most be countably
many nonzero terms!

See:
1. Riemann Rearrangement Theorem

2. https://math.stackexchange.com/questions/1413874/can-we-add-an-uncountable-number-of-positive-
elements-and-can-this-sum-be-finit

3. https://math.stackexchange.com/questions/20661/the-sum-of-an-uncountable-number-of-positive-numbers

Another reason to learn real analysis! :D



Lemon 3: The Rational Root Theorem

It’s a special case of Gauss’ Lemma and C2 Qns 18 is a subcase of the Rational Root Theorem (when a,, = 1)

Let P(z) be a polynomial;

P(z) = z”: a;x’
=0

All rational roots of the polynomial P(z), in the form x = % where ged(p, ¢) = 1, satisfy
1. plao
2. qlay,

Lemon 4: Vieta’s Formulas

We define P(z) to be a polynomial;
P(z) = Z a;x’

Let k € N3; where 1 <k < n.
As well as j € Ny, with: 1 <j<kand 1 <4 <441 <n, forall j.
Such that it has n (possibly repeated) roots: r1,7r9,- -+, 7.

Then;

K a
2 : I I kUn—k
"is (_1) a
j=1 n
Normally this is written as

k
k%n—k
> (H Tij) — (LR On=k
14 S <SS \J=1 an

But I find that subscript under the sum way to confusing for me, since whatever you write on or below the sum, is normally information related
to what terms to sum and how to sum them up. However, here it is basically info for the product. So, I prefer to write it as words before writing

the formula instead.
The notation I prefer which looks better imo is:

Let k € N>; where 1 < k < n.
As well as N = {m|(m e N) A (m < n)}}

> ITr=orees

ICN i€l
|I|=k



Lemon 5: Faulhaber’s Formula Inspired (to Google) by C2 Qns 7

n p
2= Z (pH)BmpH_i

k=1 i=

where B; notates the ith Bernoulli numbers, which have an explicit formula:

b= ZZ ()Jil

=0 v=0

So, I think we can also combine these to form an expliciter formula (and complicated) formula of:

S E o) (B0 ()

j=0v=0
See:

1. https://proofwiki.org/wiki/Faulhaber’s_Formula

2. https://www.youtube.com/watch?v=IAMfTu5bzg4

3. https://www.desmos.com/calculator/vrktco6rbh

4. https://www.desmos.com/calculator/bfnslzc5jf



Proof of Lemons

Lemon 1
Let F and G be functions, such that;

F(z) = z": aiTi
i=0

G(z) = i bz’
i=0

Now, their product is:

F(z)G(z) = iaixi X ibiazi
i=0 =0

= (aomo +axt 4+ -+ anmn)(boxoblml + ot b))

= (aobo)«’to + (aob1 + a1bo) + (aob2 + a1br + a2b2)ﬂf2
+ -+ (agbi + arbi—1 + -+ agbi—k + - + ai—1b1 + aibo)ilfi
T

) i
So, we notice that the coefficient for a general z* is: ¢; = >, arbi—g
k=0

And the product in general has (n +m + 1) terms, (thougl;coeﬂicients can possibly be zero) ranging from

20, x, 22, to g™t

Thus, the general formula for F(z)G(x) is

n+m n+m i
[ T
E cx = E E arbi_rx
i=0 =0 k=0

n+m 1 X
In the case of the equivalent form of F(2)G(z) = >, > a;—gbra?,
=0 k=0
its just indexing in the opposite direction, i.e., ag starts from ¢ and decreases to 0 while by, starts from 0 and increases

to i, with each increase in k. Or simply swap F(x) and G(x).



Learning Points

1. There’s a difference between simple / weak induction and complete / strong induction. (Check
out C2 Qns 3 for instance)

2. Trying to list out

a) What you know already (Info given in qns and prior knowledge that you think might be
useful)

(Even how it links to previous parts of the qns. Previous parts of the qus might give you a
direct, simple, and elegant solution instead of having to solve / proof everything from scratch.
See C2 Qus 3 lol.)

B) What the qns is asking, simplifying the question into a simpler form first.

(I guess basically like play around with the what the gns is asking, to see if you can find a form of
the gns that gives you inspiration on how to proceed)

So like, try to find the most important points needed to solve the qns, then try to think of
some ideas that might help to tackle each of those points to work towards the solution.



1 Basic Properties of Numbers

7.

7. Prove that if 0 < a < b, then

a+b
< b.

a < vab <

Notice that the inequality vab < (a + b)/2 holds for all a, b > 0. A gener-
alization of this fact occurs in Problem 2-22.

a<b a<b a<b
a’® < ab a+b<2b O0<b—a
b
o < Vab “; <b 0 < a® — 2ab+b?

4ab < a® + 2ab + b?
b
Vab < a;_

So,a<\/%<%+b<b.

19.



19.

The fact that a2 = 0 for all numbers a, elementary as it may seem. is
nevertheless the fundamental idea upon which most important inequali-
tes are ultimately based. The great-granddaddy of all inequalities is the
Schwarz mequality:

bl 3 3
Xy +x2y2 < \/,l‘|“ + .¥22 \/‘\‘1' SE 2

(A more general form occurs in Problem 2-21.) The three proofs of the
Schwarz inequality outlined below have only one thing in common — their
reliance on the fact that ¢ = 0 for all a.

(a) Prove that il x; = Ay; aud x2 = Ayz for some number L = 0, then
cquality holds in the Schwarz inequality. Prove the same thimg if y; =
va = 0. Now suppose that y; and y2 are not both 0. and that there is no

(©

(d)

number A st

0<(a

=

Using Probls

Prove the Sc
with

first for i =
Prove the Sc
7 9
(1= + x2°

Deduce, fron
yi=y2=0

X2 = Ay2.

In our later work, th
will be supplied at the
problems is infinitely n
prool. The statements
basic message 1s very st
then v+ y will be close
to 1/vg. The symbol “
Greek alphabet (“epsile
Roman letter; however
contexts to which these



(a) Assume 21 = Ay; and x5 = Ays for some A > 0, notice that

T1Y1 + Tay2 = MNYT +y3)

\/36? +w§\/y§+y§ = \/Az(yf +y§)\/y% +93

=/ A2(y7 +93)?
= A5 +v3)

Therefore, since 21y + T2y2 = A(y? + y3) equality holds for the Schwarz Inequality in this case

Now when y; = y2 =0,

T1Y1 + T2y2 =0

= \fa +ady /ot +03

Thence, eqality trivially holds in this case as well.

Again, let A > 0, suppose that y; and y» are not both 0, and that there is no A such that 1 = Ayy
and xo = Ay2. Then,

< (gt — x1)2 and 0 < (\ya — x2)2

<

Ayt —21)® + (A2 — 22)°

The only case where (A\y: — x1)? + (Ay2 — x2)? = 0 is if 1 = A\y; and 22 = \yo. However, we
supposed that there exists no A where this occurs. Therefore, we can safely eliminate the equality,
leaving us with:

0
—0
(

0< (M —21)? 4+ Oy — 22)?
= )\ny — 2 \x1y1 + m% + )\ng — 2)\x2y2 + x%
=Xy} +43) — 2\ (@11 + T2y2) + (2] + 23)

As desired.

Since our quadratic equation here is greater than O for all =, we can apply the discriminant from
18.:

2(1y1 + 22y2) < 24/t + xg\/yf +y3

iy + aays < \Jod+ a3y JuE ol

Thence, we have exhausted all possible options by showing that equality holds iff z; = Ay; and
To = Ays or yo = yo = 0, otherwise, the inequality is true but both sides are then not equal. So,
we have proven the Schwarz Inequality.

(b)

10



2xy < 22 + 42 is derived as follows:

0< (z—y)°
0<a® -2y +9°
22y < 2% +3?
Let x = éﬂ% and y = ?ﬂg where i = 1,2;

20y < a2 + 12

2 2
9 X Yi < X + Yi
Vai+a23 ) \Vii +13 Vai+a3 N
s _ 2R+ 4d) 4R+ ad)
Vi taiE+eE o (@ +ad)yi +y3)

Now, summing the cases of i = 1 and i = 2, we get;

2z1Y1 n 2z2Yy2 < 23y +y3) +yiei+ad) | 23y +v3) +y3(=F +23)
S 2 N2 12 2 22 1 2
Vaitady it tod  \Jat a3k 403 (04 22) w1+ 22) (e + o2)lvi +v2)
2x1y1 + 2z2Y2 2(« + 23) (v +93)

[x2 + a3y /y? +y3 (351+12 (i +v3)
z1y1 + z2y2 < /2 + 2341/95 + v3

We indeed get that the Schwarz Inequality holds true!
(c)
We first see that:

(@} + 23) (F + v3) = oiuf + aly3 + 2397 + 23y3
= [(z131)” + 221y1 + (2202)°] + [(2132)* — 2(21y2) (T2y1) + (2291)7]
= (z1y1 + 2212)” + (21y2 — T211)?

11



2 Numbers of Various Sorts

3.

3. I 0 <k < n, the “binomial coefhecient” (:) is defined by

it k#£0.n

(n)_ n! _ nn=1)=in=k+ 1)
ki kiin—k) k! !

n n : . A0,y s !
(”) = ( ) = | (a special case of the first formula if we define 0! = 1),
n

and for k < 0 or k > n we just define the binomial coefhcient to be 0.

(%)= ()

(The proof does not require an induction argument.)

(a) Prove that

This relation gives rise to the following configuration, known as “Pas-

cal’s trnangle™ —a number not on one of the sides 1s the sum of the two

. . " i n\ .
numbers above it; the binomial coeflicient (L) 1s the (k + 1)st number

in the (n + 1)st row.

12



(b) Notice that all the numbers in Pascal’s triangle are natural numbers. Use
: . ny . 2
part (a) to prove by induction that ) & always a natural number. (Your

entire proof by induction will, in a sense, be summed up i a glance by
Pascal’s triangle.)

. . n . <
(¢) Give another proof that (k) is a natural number by showing that

ny . . »
(k) is the number of sets of exactly k integers each chosen from 1,
NLe

(d) Prove the “binomial theorem™: If a and b are any numbers and n is a
natural number, then

@+b)" =a" 4 (,:)a"-lb-i- (’;)01:—2,}34_ +( n I)ﬂ'b"_l 4"
= n

— Z (”_)ﬂ"_jbj.
J

j=0

(e) Prove that

8 Zr()=()-()=()-0
LI (1)=(1)+ )+ =2
o 2 ()= )G

13



n n n! n!
(k—1>+<é>:(n—k+1mk—1ﬁ+(n—mm!
:n(n—l)-~-(n—k+2) nn—1)---(n—k+1)

(k—1)! k!

:kn(n—l)---(n—k+2)+n(n—1)-~-(n—k+1)
k! k!
(ktn—k+1)(n)n—-1)---(n—k+2)
B k!
_ m+1)n)n—1)---(n—k+2)
k!

_ (n+1)
T+ 1- k)l

()
QED. ®
(b)

Notice that (J) = 1 is a natural number. In fact this holds for (}) and ("), for all n, because:

n n! n! n
= — = 1 = —_— =
0 n!0! 0'n! n

Suppose that for all k and m, such that 0 < k& < m < n, (7:) is a natural number.

Consider ("Z‘l); In the case where k =0 or k =n + 1, ("Zl) = 1 trivially. Now look at the other

cases where k <m < n+ 1.
n+1 B n n n
k S \k-1 k
n+1

By our hypothesis, (kﬁl) and (Z) are both natural numbers. So, ( L ), which is a sum of those
two natural numbers above, must be a natural number itself too.

QED.®

14



Note to self: This induction hypothesis (IH) is allowed legally (rigorously) because

It is not: you are NOT taking 0 as n of the IH, i.e. this is not saying that since (8) is a natural number, anything

below it is and trying to proof that (Z) is thus a natural number.

What this induction hypothesis is saying is that since we know (3) is a natural number, if we take 0+ 1 =1 as the
‘new’ n, then the our m can only be 0. But note that we cannot apply the formula here since ((1)) = (—01) + (8) and

(}) = (g) + ((1)) But it doesn’t matter since we know that they are both 1. ((Z) =1= (3))

Let us take n = 2 instead. Now, we need to note the case where m = 1 and & = 0 or £ = 1. Noting this,
(f) = (é) + (D As we know that (i) is just 1, (f) which is a sum of 2 natural numbers, specifically 1+ 1 = 2 in this

case, therefore it must also be a natural number. By induction, you can just continue this chain.

(c)

For a set N with |N| =n, (}) is the number of subsets of N with cardinality k that can be chosen,
which is of course a natural number.

(i.e.: The number of subsets that exist with & elements chosen from N)

Equivalently, let the set of all subsets of N with cardinality k& be S. Then, (2) = |S|, again this

must be a natural number.

This is easily verifiable for n = 0 and k = 0;

The set with cardinality 0 is &, so there is only 1 subset from @ with 0 elements, this being & itself.
|{@}| = 1. This agrees with our factorial definition of (}).

Similarly, (7) and () are the number of subsets that can be chosen with 0 elements and n elements,
respectively, from a set with cardinality n. There exists only one such subset for each of these cases;
@ and the set with cardinality n itself respectively.

Now, suppose that for all natural numbers k and m such that 0 < k < m < n, (}) is a natural
number.
Consider the case of (";1)

"o or (1

In the other cases where 1 < k < n, we simply apply Pascal’s Rule;

n+1) n n n
k S \k-1 k
Since (kfl) (2) are both natural numbers by our hypothesis, their sum, ("zl) must be natural
numbers as well.
Therefore, by induction, for all natural n and k, (Z) is a natural number and is the number of

subsets with k elements of a set N, where |N| = n, that can be chosen.

In the cases where ( ), they equal 1 by the same argument as above.

15



(d)
The Binomial Theorem trivially works for n = 0, as

(a+0)" =
— (0
Z <> a® % = a"" =1
i=0 M
Suppose The Binomial Theorem works for some n, i.e. (a+b)" = > (?) a7, then we will see
=0

that it works for n 4+ 1 too;

(a+b)"T = (a+b)(a+b)"
=(a+b)> (”) a"
i=o M
—dZ( ) "I by (’?)w—%j
Jj=0 Jj=0 J
(D)oo 5 (e
—\j =\
n+1
(n) n— j+1bj+z(.n )an—j+1bj
=Vl

J

SS

J
7=0

To proceed, let us define (
in two ways:

1. (fk) and (cik) is similar to the number of ways there is to choose —k < 0 and ¢+ k > ¢ number
of items, respectively, from a set with ¢ > 0 items. But there is no such way to choose a negative
number of items or a number of items greater than which the set contains. Thus, it makes sense to
define it as 0.

2. For any m, we know (mH) = 0. And defining ( %) and (, +k) this way means that Pascal’s

Formula works even more generally, (") = (™) + (%) =0+1=1 and (Zﬁ) = (") + (m“}rl) =
1+ 0 = 1 which is what we want to see.

Cik) =0 and (fk) =0 for ¢ € Ng and k € N. This definition makes sense

Therefore, we can continue our proof;

n n+1
§ ) a1y 4 § : ( >a"—]+1b3
(J) Pl VA

7=0

n+1 n+1
= (n) av It 4 Z < " >a"‘j+1bj
=0\ =
n+1
g 1 (6 R Py
par S AV Jg—1
n+1

(” + 1> Qi1
J

So, by induction, we have proven that for any n € Ny, a,b € R,

(a+0b)" = zn: (”) a"itpi

=0 M

Jj=0

16



QED. H
(e)()

Trivially, > (;‘) = 2" works for n = 0;
=0

()

=0
0

(=]

J
=1
=20

n
Suppose > (?) = 2™ for some n, then it is also true for n + 1;
§=0

n+1 <TL+1>
— J
1

> (1) 2 ()

J

(Since (nik) = (") =0forneNpand k € N, as justified in (d))

> (5)+%0)

§=0
=2" 42"
=2(2")
:2n+1

So, by induction, > (?) = 2" for all (natural) values of n.
§=0

17



(e)(i1)

S cap(2) = (3) - (1) =110

J

n .
It is easily seen that Y. (—1)7("}) = 0 is true for n = 1;
7=0

Suppose > (—1)J (?) = 0 holds for all natural numbers m, where

O<k<men,
Now consider jgj;: (—1)7 ("+);
> ()
S ("))
Sew](n) ()
Sen(n) S en()
v (n) ()

m )
Since we know that Y (—1)7 (’?) for0 <m < n:
=0

So, by induction, > (—1)7 (';) =0 for all n € N34
j=0

18



(e) (i)

n
We see that > (Tg) =2""1tand (Z) = 27~1 rather simply in the case of n =1,
¢ odd ¢ even

Suppose that Y. () = 2™t and Y (7)) = 2™"! and are true for all natural numbers m,

¢ odd £ even

where 0 </ <m<n
n+1

Then, it holds true that > ("7') = 2(+b-1

£ odd
% n+1
/

-2 ()0

n

n
By our hypothesis, we know that Y. (7) is the same as 2"~!, and > () the same as 2”71

¢ odd ¢ even

2162+ 0)

n+1 |:
n+1
— n—1
L)
£ odd
n 1
l
Keven
2n 1+2n 1
=2(2"7)

27L

\_/

Therefore, by induction, > (%) = 2"~ is true for all n € N3,

(e)(iv) Just take (e)(ii)-(e)(iii) lol.

19



Answer

3.(a) Don’t really have to say anything for this, just slap that factorial definition down
(b) Should be ok, about the same
(

c)

(c) There are n(n — 1)---(n — k + 1) k-tuples of distinct integers each chosen
from 1,...,n, since the first can be picked in n ways, the next in n — 1 ways,
etc. Now each set of exactly k integers can be arranged in k! k-tuples, so there are
n(n—1)---(n—k+1)/k! = (}) such sets.

(d) Should be good too :)

(e)(i) "Imao just apply the binomial theorem” (14 1)" = 37 (7)1" 717 = 37 ()
(e)(ii) Apply TBT: (1 — 1)™ e(iii) "1ol just take (i)-(ii)” Basically,

0

Q)6 6=
5()-r
£ ()

(e)(iv) Yeah just take (i)-(iii) or (i)-+(ii)

20



4. i Il]ll\l'lh-l[

) ol B

k=0

Hint: Apply the binomial theorem to (1 + x)"(1 + x)™.

()

b) Prove that

> (1)

k=)

(a)

First, observe that:
n+m n + m
1+m __ )
(1+x) = Z ( ; ):c
1=0
Now, let’s look at an equivalent formulation using the fact that (1 + z)"*™ = (1 4+ 2)*(1 + z)™:
1 n 1 m — 1 X X3
(1+2)"(1+2) Z<Z>x Z(z)x

i=0 =0

n+m

= Z (Pil'i
i=0

By Lemon 1, convolution, ¢; is:

A (7))

Therefore, by substituting this back into our second sum above, we get

> =35 (1))

i=0 k=0
So,

oA EED 3 o [N

Since we know that for any polynomials to be equal, they must have identical coefficients for each
z'. Thus, by comparing coefficients;

(-2 (6"
()2 06"

You can choose not to use Lemon 1 (directly) by expanding (1+ )™ and (a+ x)™ then factorising the powers, using

a similar argument as Lemon 1

QED. H

21



(b)
> () S (E -2 00

So, we can apply our identity from (a) now;
Zn: n n _(2n
E)\n—k) \n
k=0

Answer

(a) The answer basically said ”its obvious Imao” But the proof I wrote should be alright.
(b) Yeah its good :D

5. (a) Prove by induction on n that
=]
l+r+rid "= ——
| —r
if r# 1 (f r =1, evaluating the sum certainly presents no problem).
b) Derive this result by setting § = 1474 4", multplying this equation
by r. and solving the two equations for §.

(a)

We easily see that the cases where n = 0 holds true;

0
. 1— T0+1
Zrl =¥ =1= 4
i=0 -7
n . n
Now assume there exists some n such that > r* = 1_1T_T+1 holds true. Then, we shall see that it
i=0
also holds for n + 1:
n+1 n
i=0 i=0
1 —pntl
=t 4 T, (Since it holds for some n)
—-r
R e e e
N 1—r
B rnJrl _ 7,,n+2 + 1— rnJrl
N 1—r
1— r(n+1)+1

1—1r

So, by induction, 3. ' = =% holds true for all n € Ng and all r # 1.
=0

QED.®
(b)

22



n . n+1l |
Let S= ) r*and Sr= ) r". Now, we can do a simple substitution:
i=0 i=1

n+1 n
Sr:ZTi :Zri—l—&—r”“
i=1 i=0
S(r—1)=—14r""!

S(1—7r)=1—¢"1
1 —pntt

5= 1—7r

Answer

Its so trivial that there’s no answer inside lol

23



6.
g - - el 3 - - b . .
6. The formula for 1=+ .. 4+ n- may be derived as follows. We begin with the

formula
k+ 13— k> =3k* + 3k + 1.

Writing this formula for k = 1. ... |, n and adding, we obtain

(=

+3-141
+3-2+1

bt

b =

L1 - =38-A2 %3041

1P -1 =3[12+--- 4] +3[1 +---+n] +n.

n n

P ~ 7 o »

I'’hus we can find E k= if we already know E k (which could have been
k=1 _k:l

found in a similar way). Use this method to find

1) [ER RIS T

T R g

| E | " |

i - — -
1«2 2.3 nin+1)

: 3 ; S 1 - 2n+1

v T ey P R e 2
12.22 ° 22.32 n2(n + 1)2

(i)
We know that by The Binomial Theorem,

(k4 1)* — k* = 4k3 + 6% +- 4k + 1
Notice that when we use k + 1 instead of k,

(k+2)* —(k+1)* =4k +1)3+6(k+1)> +4(k+1)+1

This means that when we sum them up, the (k + 1)* term will be removed:
4+ k' + (k+2)' = (k+1)* =4k + 6k*> + 4k + 1
+(k+1)*+6(k+1)2+4(k+1)+1
(k+2)* —k* =4[k* + (k+ 1% + 6k + (k+ 1) P + 4k + (k+ )] +2

So, summing up k from 1 to n;

D k1) =kt =) 4k +6k% + 4k + 1
k=1 k=1
(n+1)4—1:4[2k3 +6 | K| 4> k| +n
k=1 k=1 k=1
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Note that -1 comes from the first term (where k = 1) since there are no other terms with +1 (on the left hand side),
while (n+ 1)* comes from the last term where there is no no case where k = n -+ 1 in which —(n + 1)* would ’cancel’
it away, as n is the upper bound of the summation. (If you haven’t noticed, the n on the right hand side is the result
of Y p_y1=mn.)

n

Therefore, using the fact that ) k= % and Y k% = w;
k=1 k=1

n n n
oﬂqf—1:4pjﬁ +6 (Y K| +4 (> kl+n
k=1 k=1 k=1
- D(2n+1 1
(n+1)'—1=4> "k +6[Mn+)(n+)]+4{mn+)}+n
— 6 2
zn:k?’ C(n+1D)*—n—-1-nn+1)2n+1) —2n(n+1)
k=1 4
~ (n*+4an? 4 6n* +4n+1) —n—1— (20 + 3n® +n) — (2n° + 2n)
N 4
_ n* 4+ 2n3 + n?
N 4
_ n?(n+1)?
4
(ii) Just repeat the same procedure :p
(iii)
We see that:
1 1 1

G+12 k k+1

Notice that, again, for k + 1;
1 1 1

(k+2)? k+1 k+2

Similar to that of in (¢) and (ii), when we add these two together, we get:

NS SRR S SRR R
k+1)2  (k+22 k k+1 Ek+1 k42
_1 1
ok k42
So, for 3 S —
kzz:l =)
SERIREE
Pt kE(k+1) n+1
_n
T n+41
(iv)
We first see that:
2k +1 1 1

R2k+1)2 k2 (k+1)?
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Again, for k£ + 1 instead of k,

2k +1)+1 1 1

k+12(k+2)? (k+r1)2  (k+2)2

Similarly to previous parts, when we sum them up,

2k +1 2b+D41 1111
REk+r1)2  (krD2(k+22 k2 (k+12 " (k+r1)2  (k+2)p2
! 1

SR (k+2)?

n
2kt1 .
So, now for kzl O

n

2k+1 1

R (k+1)2 0 (n+1)?

Answer

6.(1) Should be right (ii) Yeah just repeat Imao
(iii) T guess shld be ok (iv) Yah seems correct
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n
*7. Use the method of Problem 6 to show that E k" can always be written in
i=l
the form
np+l

p+1

(The first 10 such expressions are

H
Zk = %HJ 4 =l;n

k=1

H

7 3
Zk' = %n‘ + %”2 + %n
k=1

£ AnP e BaR e 2,

n
.
Zk" = gh + %u' + g0
k=1
"
Zr’c4 = %HS + %114 + %113 - %n
|

"
Z ks = gh + 510 4 |5—2n — |—|2n
=1

n
Zk(’ = .'}n? an A lld én" + 4]—21:
=

H
Z k= éng - ﬁlnv -+ }."—2116 — %}ﬁ + %n“
=1
n
¢ 2 2.3
ka = %n) + %n“ + gn? - —Fﬁ-nS T = ﬁlﬁn
k=1

H

9_1.10,1,9 , 38 7 6,14 3
ZF. =gt t3n +3n gt 5n 51
=1

n

ol e LB ] [0 1 G e Bl 3
ZA = qn'' + 50"+ 20 In" + 1n Suk
k=1

Notice that the coefficients in the second column are always % and that alter
the third column the powers ol n with nonzero coeflicients decrease by 2 until
1% or i is reached. The coeflicients in all but the first two colunms seem to
be rather haphazard, but there actually is somie sort of pattern; finding it may
be regarded as a super-perspicacity test. See Problem 27-17 for the complete
story.)
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By The Binomial Theorem,

p
(k+ 1P — gt =y (pﬂ) %

i=0 !
We see that when k + 1 is used instead of k,

(k+2)P! — (k+ 1P = zp: (pj 1) (k + 1)’

i=0

Notice that
It 3 O N (S - =t (g )P R

1 ; , , 1 , ;

:(P‘; )[1p+2p+“,+(n_1)p+np]+(p'g )[1;1—1+2p71+.H_,’_(n_l)pfl_i_"pfl}_"_.“_’_
1

(Zil>[l+2+~“+(n71)+n]+n

= et o= [ (1) (350
=0 k=1

Therefore, using this fact;

= kzi:lk”’ + +1 S zzp%)Jr[(lpng) <k2_:1 - ]
Sl ) S ) ()

S e (EY)




So,
N M= )[(pi?ii%(pi?iiﬂ“ﬂ
o) () (E4)] -+
Answer

Sheulé%&eeﬂteet—e&!e&%he&gh Nope wrong; Other than the fact that there might have been a care-
n—1

less mistake turning — into +, Z {( p+1> (P"Tl) ( 3 kZﬂ still involves n and is not fully simplified
k=1

K2

as necessary. Which is also Why the coefficient of n? is wrong for instance. (Even if I derived a cor-
rect formula, I forgot to prove the formula) Answer used induction instead to prove the statement.

7. The proof is by complete induction on p. The statement is true for p = 1, since

= n(n+1) n?
Zk_—z =5 +n

Suppose that the statement is true for all natural numbers < p. The binomial theorem
yields the equations

(k + )Pt — kP! = (p + 1)kP + terms involving lower powers of k.
Adding for k =1, ..., n, we obtain

ne+t & n
-("—+—+)1-— = Ek"’ + terms involving Zkr for r < p.
p k=1 k=1

Chapter 2

n
By assumption, we can write each ) k" as an expression involving powers n° with
k=1
5 < p. It follows that

p_ (1P 1Pt . .
Zk 1 ———— + terms involving powers of n less thatn p + 1.
k=1
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13.

— . . - I Sy ~
13. (a) Prove that v/_i. \/E and 6 are wrational. Hint: To treat v/ 3, lor exam-
ple, use the fact that every integer is of the form 3n or 3u + 1 or 3n + 2.
Why doesn’t this proof work for V4

Y = 1~ . .
(b) Prove that v2 and V3 are irrational.

(a)
Assume that /3 is a rational number, i.e.:

V3= 2. where ged(a,b) =1, and a € Ny, b € N34

b’
2
a
32[)72
32 =a?

This means that 3 is a factor of 2. Since 3 is a prime number, it cannot be formed by a combination
of two other factors of a. Therefore, 3 is a factor of a as well:

a? = (3k)? = 9k? for some k € N
= 3b* = 9k*
b* = 3k?

Thus, by the same reasoning as shown above for a, 3 is also a factor of b, meaning ged(a,b) >
However, this contradicts our assumption that v/3 is a rational number and can be expressed as

such that ged(a,b) = 1. So, v/3 must not be rational and is instead irrational.

g WP

2 2
Note to self, now Z—z = g% = % which supports what we know, that 3 is a prime number. Also, % = % = 3‘3/]?“
V3

7%, again supporting what we know that V/3 is irrational.
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Assume that +/5 is a rational number, i.e.:

5= %, where ged(a,b) =1, and a € Ny, b € N34
2
a
5 = be
50 = a*

This means that 5 is a factor of a. Since 5 is a prime number, it cannot be formed by a combination
of other factors of a. Therefore, 5 is a factor of a as well:

a® = (5k*) = 25k? for some k € Ny
= 5b* = 25k>
b? = 5k
Thus, by the same argument as shown above for a having 5 as its factor, b must also have 5 as a
factor in this case, meaning that ged(a,b) > 5. However, this contradicts our assumption that that

/5 is a rational number and as such can be expressed as ¢ with ged(a, b) = 1. So, /5 must not be
rational, i.e. it must be irrational.

Assume that /6 is a rational number, i.e.:

6= %, where ged(a,b) =1, and a € Ny, b € N3y
6=
B2
6b* = a*

The prime factorisation of 6 = (2)(3) and 6 is a factor of a. Since a has identical factors with itself
and the prime factors of 6 are not repeated (i.e. they are of power 1), a must contain 6 as a factor.
(It is clearly impossible that one of the two a’s will have a factor of 2 (without having a factor of 3
as well), vice versa)

a® = (6k)? = 36k? for some k € Ny
= 6b> = 36k>
b* = 6k*
Thus, by the same argument as shown above for the case of 6 being a factor of a, 6 must be a

factor of b as well. This means that ged(a,b) > 6. However, this contradicts our assumption that
ged(a,b) = 1. So, /6 must not be rational, i.e. it is irrational.
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(b)

Assume that /2 is rational, i.e.:

V2 = 7 where ged(a,b) =1, and a € No,b € N3,
3
a
2=173
2% = a3

Since 2 is a prime number, it cannot be formed by a combination of other factors of a (besides 2
itself) such that 2 is a factor of a3, meaning 2 must be a factor of a as well.

a® = (2k)® = 8k, for some k € Ny
= 2b° = 8k*
b = 4k?
Thus, 4 must be a factor of b by a similar argument as above for showing 2 is a factor of a, i.e.
that:
As there exists no possible combination of factors of b (besides with 4 itself) such that 4 is a factor of b3
This means that gcd(a,b) > 2. However, this contradicts our assumption that /2 is a rational

number, which can be expressed as § where ged(a,b) = 1. So, /2 must not be rational, i.e. it must
be irrational.

Just the same procedure to show /3 is irrational.

Answer
Yah seems correct.
14.
14. Prove that
(a) \/§+ V6 is irrational.
(b \/§+ V3 is irrational.
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(a)

Assume that v/2 + /6 is irrational, i.e. that:

\/5—&-\/6:%, where a € No,b € Ny
2
8+2v2V6= 3
a2
a? a’® — 8b?
V3= 2= e

We easily see that a2, —8b?, 4b? are all natural numbers, since they are (natural) multiples of natural
numbers a,b. Therefore, this would mean that /3 is rational as ai@ﬁlf is a fraction of 2 integers.
However, we know that V3 is actually irrational.

So, since V2446 being rational would imply V3 is rational, which contradicts the fact that V3 is
actually irrational, thus /2 4+ /6 must be irrational.

(b)

Assume that v2 + /3 is rational, i.e. that:

\/§+\/§:%7 WhereaeNo,b€N21
2
5+2v2V3 = Z2
a? — 5b?
6=—>5—
V6 2h2

We again easily see that a?,5b%,2b% are all natural numbers, since they are (natural) multiples of
natural numbers a,b. Therefore, this would mean that /6 is rational as “2271151’2 is a fraction of 2
integers. However, we know that /6 is actually irrational.

So, since V2 4+ /3 would imply that V6 is rational, which contradicts the fact that V6 is actually
irrational, thus /2 4+ /3 must be irrational.

Answer

Yah seems correct.
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15.

15. (a) Prove thatif x = p+ /g where p and ¢ are rational, and m is a natural
number, then ¥ = a + b./q for some rational @ and b.
(b) Prove also that (p — /9 )" =a—b./q.
(a)

Let © = p+ /q where p,q € Q and m, k € Ny,
Now, for ™

P+vo™
(TIZ pm k\/ak

)
ka@ o3 ()
() w3 ()i va

So, we thus notice 3 facts as (') is a natural number for all m, k:

=

p”qg

k

I
=)

b
Il
<)

thg M

>
Il

k even

m
1. m—Fk is an integer, and hence p™~* is rational too. This means that (’Z‘)pm_k and Y (Z‘)pm_k
k=0
are rational too.

1

m
2. For any even k, k € Ny, thus, ¢g2* and Y (?)q%k are rationals.

k even

m m 1
(It should be easy to see that > (7]?)107”_’C + > (?)qik is a sum of 2 rationals and must be rational itself.)
k=0

k even

3. Given any odd k, k — 1 is an even natural number. Therefore, \/cjk*1 = q% is again ¢ raised
m

to some natural power, meaning /"' is rational. Thence, . 9! V@" ! is rational too.

k odd

Therefore, we have shown that ™ = a + b,/q, where

a:kiompm—uki (T)g¥* and b= Y0 0 (T) /@

which are both rational.
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Note to self: Btw if you're reading this again don’t forget why the odd can’t necessarily be changed to even for
all k. (Specifically for even m)
E.g.: Let m=4

S (V= S (= () (e

k odd ke{1,3}

2 3 (V= ()G ()7

ke{0,2,4}

(b) Just repeat (a) lol

Answer

Yeah shld be alright, but another way to do it which is easier is just to use induction

15. (a) The assertion is true for m = 1. If it is true for m, then

(P+/4)" = (p+ /)@ +byq) = (ap+bg)+ (a+ pb)/q,
and ap + bg and a + bp are rational.

(b) The assertion is true for m = 1. If it is true for m, then
(p— @)™ = (p - Vq)a—b/q)=(ap+bg) — @+ pb)\/3,
whereas (p + /g )™ = (ap + bq) + (a + pb)./q by part (a).

16.

.o bl bl
16. (a) Prove that il m and » are natural numbers and m=/n= < 2, then
) bl
(m =+ 2n)=/(m + n)~ > 2; show, morcover, that
D)~ 2
m+2 1
(m + 2n) 5 5

<2-—.

- 5 — ~“
(im +n)- i

(b) Prove the same results with all inequality signs reversed.
(¢} Prove that if m/n < V2. then there is another rational number m'/n’

with m/n <m’/n’ < V2.

(a) Let m,n € N3 such that m?/n? < 2.
We now observe that since m,n > 1:

m-+2n >3 m-+mn>2
(m+2n)? >9 (m+n)? >4
Therefore,
(m + 2n)? - 21
(m+n)? 4
(m + 2n)? 59
(m +n)?
(c)

If m/n < /2, then v/2 — 2 > 0. Now, let p, ¢ € N>; such that % < V2 — 2. We can now obtain
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our m’ and n’ we want;

n n  q ng

m m mq—+n
<DL P_MTIP _f

It is trivial to see that mgq + np,ng € N> as they are just sums and products of natural numbers.
So, our m’ = mgq + np and our n’ = ngq.

Proof 2:
We first take the average of m/n and V2

s (5 +v2)

We obviously know that /2 is irrational and so we can replace it with some o< % < /2, where
p,q € N31, so that the m’ and n’ are natural numbers:

Now, we see that:

m
m_p m_p
n q noq
7n+p<2(p> 2 (Z) <242
noq q n/ ~n o q
1 /m 1
Lim p)_p m_1l(m_ »p
2\n q) q n 2\n q
m/ /
m_Pr_ s m_m
n' o q n n

Therefore, this again satisfies our other condition that ™ < %,/ = %ﬁlm’ <V2.

QED. H
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Answer
Should be right

Spivak’s Calculus Answer Book:
16. (a) The inequality (m + 2n)?/(m + n)? > 2 is equivalent to
m? + 4mn + 4n® > 2m?* + 4mn + 2n?,
or simply 2n% > m?.
The second inequality is equivalent to
n?[(m +2n)? — 2(m + n)’] < 2n* — m*)(m +n)’,

or
n?(2n® — m?) < (2n2 — m»)(n? + [2mn + m?)),

Chapter 2

or
0 < (2n* — m®»(Q2mn + m?).
(b) Reverse all inequality signs in the solution for part (a).

(c¢) Let m; =m + 2n and n; = m + n, and then choose

m' =my +2ny =3m + 4n,
n'=m|+ n1=2m+3n.
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Yeu Jiunn Integration Area Qns

Since R(y) is a polynomial of degree 3, i.e.: R(y) = a1z +a22>+azz> where a; € R, and B(y) = R"(y),
the degree of B(y) must be 3-2=1. This means that B(y) = my + k, for some m, k € R.

We know 2 points, D and E, on B(y), which we can use to find m and k:

10-1
m = -——— =

(2-3)

k=10—-6(2) = -2

Therefore, we see that B(y) = 6y — 2. We know point A is a stationary point of P(y), i.e. when
P'(y) = 66(y — 2) = 0. Using this, we can find the coordinates of A

P'(y) =66(y —2) =0

y =2
r=332-2)72=0
=A(0,2)

B(y) = R"(y), so by integrating B(y) twice and using the fact that point A(0,2) is a stationary
point of R(y), i.e: R'(2)=0and R(2) =0:

R’(y)Z/B(y)dy=/6y—2dy

=3y’ —2y+
R(2) =0
84+c1 =0
61:—8

=R (y) =3y -2y -8

R(y)Z/R’(y)dy=/3y2—2y—8dy

=y’ —y -8yt

R(2) =0
—12+62 = 0
62:12

:>R(y)=y3—y2—8y+12

To find the coordinates of C, since C' is the point at which R(y) = B(y),

R(y) = B(y)
y* —y? — 8y +12 =6y —2
-y -1y +14=0
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Let ¢(y) = y® — y*> — 14y + 14, now notice that;
p(1)=1° -1 - 14+ 14=0

Thus, by The Factor Theorem, (y — 1) is a factor of ¢(y). We continue solving for the coordinates
of C,

v =y — 14y +14=0
(y—1)(y*—14) =0
y—1=00Ry*—-14=0
y=10R (y+V14)(y — V14) =0
OR y = +V14

By the graph given, y. > 0, so y. # —V14, and y. < P(z.);

Ye = \/ﬁ Ye =1
T, =6V14 -2 r.=6—-—2=4
P(z.) = 33(6V14 — 4)* = 11233 33(2)% = 132

(nearest whole no.)

Obviously, 1 < 132 while —v/14 ¢ 11233 (nearest whole no.). We easily see that C(4,1). As for the
coordinate of B, we repeat a similar procedure since it is the intersection between P(y) and B(y);

P(y) = B(y)
33(y —2)% = 6y — 2
33y% — 138y + 134 =0
—(—138) + /(—138)2 — 4(33)(134)

2(33)
1
y— 2t V33
11 33

Once again, utilising the graph given we see that there are two intersections between P(y) and
B(y), and B has a lower value for its y-coordinate compared to the other intersection point. Thus,

_ 91 V339 _ 1 V339 _ 6 2v/339 6 2v/339 1 V339
yB—Qﬁ_Tande—6 2H_T _2_10ﬁ_ 11 7B<10ﬁ_ 11 ’2ﬁ_ 33)We

can finally compute the shaded area: (Goddamn finally after 10 mil-)
These are the coordinates of the points we need: A(0,2), B (10%1 — 2v339 oL —Vg’?f’g)), C(4,1).
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2 2
/2i @P(y)dw;(mﬁ )(2111> /IR(y)dy

2 2
3 /339 1 /339 )
= — 22 dy+ | 7= — 1— — - 32— 12d
/21,@ 33y —2)°dy (711 )( 11 33 ) /1 yioy -8yt 12dy

‘ 105 116v/339 43 2
=11 [(y - 2)3]2 1 339 88— — ————— — |:y Y :|
1

- 4yt 412
S T 363 43 Wl

T R P

3
—11 |[(2-2)3 - o1 V339 105 116v339 5
121 363 12

3
1 11 V339 +8105 116\/@_15
121 363 12

(25 113V339 105 116V339 5
—12—1—\/ A |
S T R TR Y] 363 12
955  15311/339

=305 ~ " 10%0

Well im no computer, not gonna stare till this answer becomes right.
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9.  Prove that if a set A of natural numbers contains ng and contains k& + 1
whenever it contains &, then A contains all natural numbers > ag.

We know that set A must contain ng as stated in the question. But let’s assume that set A does
not contain all natural numbers greater than ng.

Let the set of all natural numbers, n > ng, such that n ¢ A, be S. Then, there must be some
smallest natural number, ng, in S. The more technical construction of S is: Using the Axiom
Schema Of Specification,

Vnne S neNygAn ¢ A)

Thereafter, we know that ny — 1 € A. (ng is always in A, so the smallest possible n in S is ng + 1,
in which case this still trivially holds)

We know that the set A contains k + 1 whenever it contains k, and n, — 1 is contained in A, thus
n, must be contained in A as well.

However, by our construction of the set S, it contains all natural numbers not in A, i.e. they are
disjoint sets. So this creates a contradiction because ng cannot be in A and S at the same time.

Thence, the set A must contain all natural numbers greater than or equal to ng.

Answer

Should be correct

11.  Prove the principle of complete imduction from the ordinary principle of
mducton. Hine: If A conmtams | and A contains n + 1 whenever it contains
I, n, consider the set B of all & such that 1, ..., k are all in A.

11.

The logical statement of the ordinary principle of induction is that:
Let P(n) be some predicate, k,n € Ny

(P(1) AVK[P(k) = P(k + 1)]) < YnP(n)

While that of the principle of complete induction is:

( ) AVk (/\P )éPk+1)

(P(1) ANVE[P(k) = P(k +1)]) < ( ) AV )= P(i+1)]

|
)

Therefore since the ordinary principle of induction, which we know to be true, implies the principal
of complete induction, this principle of complete induction must be true as well

Answer

) < VnP(n)

We see that;

>:¢

z:l

k
/\ i) = P(k+1)
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11. Clearly 1isin B. If kisin B, then 1,...,k are all in A, so k+ 1 is in A, so
1,...,k+1arein A, sok + 1 is in B. By (ordinary) induction, B = N, so also
A=N.

Let A be aset suchthat 1 € A,andn+1€ Aiff 1,2,--- ,n € A, while B be a set such that k € B
iff 1,2, -,k € A

Notice that 1 € B trivially since 1 € A.

Now suppose there exists some k € B, meaning 1,2,--- ,k € A. So, we see that k +1 € A. Then,
1,2,--- Jk,k+1€ A thusk+ 1€ B.

By the ordinary principle of induction, B = N3, therefore, A = N3,

Or logically, let n,k € N>, and A, B be sets such that:
leAN(n+1€e A& 1,2, ;neA)

keB&1,2,--- ke A
We see that 1 € Bsincel € A< 1€ B.
Now, suppose that there exists some k such that & € B, then £ 4+ 1 € B must be true, because:
keBs1,2,--- ke A
sk+lecA
<1,2,--- kk+1e A
<k+1eB

By the ordinary principle of induction, B = N3, so A = Ny 1;

B=Ny; & (xeNy; =2€B)
S xeNy; = (xeB<1,2,--- ,x €A
S (reNy;=1,2,--- x€ A
< (reNs; =z e A
< A=Ny,

17.
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¥17. It seems hkely that v is irrational whenever the natural number # is not

the square of another natural number, Although the method of Problem 13

may actually be used to wreat any particular case, it is not clear in advance

that it will always work, and a proof for the general case requires some extra
information. A natural number p is called a prime number if it is impos-

sible to write p = ab for natural numbers g and b unless one of these 1s p,

and the other 1; for convenience we also agree that 1 is not a prime number.

The first tew prime numbers are 2, 3,5, 7, 1. 13, 17, 19. If # > | 1s not a

prime, then n = ab, with @ and & hoth < n; il either @ or b is not a prime it

can be factored similarly; continuing in this way proves that we can write n

as a product of primes. For example. 28=4.7=2.2.7,

(a) "Turn this argument into a rigorous prool by complete induction. (‘To
be sure, any reasonable mathematician would accept the informal argu-
ment, but this is partly because it would be obvious to her how to state
it rigorously)

A fundamental theorem about integers, which we will not prove here, states

that this factorization is unique, except for the order of the factors. Thus,

for example, 28 can never be written as a product of primes one of which

is 3, nor can it be written in a way that involves 2 only once (now you should

appreciate why 1 1s not allowed as a prime).

(b) Using this fact, prove that /i is irrational unless n = m? for some natural
number m.

(¢} Prove more generally that /i is irrational unless n = m*.

(d) No discussion of prime numbers should fail to allude to Euchid’s beautiful
proofl that there are infinitely many of them. Prove that there cannot be
only finitely many prime numbers py, pa, p3, ..., p, by considering
PL-p2--cpn+ L

(a)
Let’s start off by looking at n = 2, obviously it has a prime factorisation of just the product of a

single number, 2 itself.

Suppose that there exists some natural number n > 2, such that all natural numbers m < n have
prime factorisations. Now consider the case of n + 1, and notice that:

1. There is either some my such that my divides n + 1, which would mean that n + 1 = myms..
Since we know all m < n have prime factorisations, this means that n + 1 is equal to the
product of the prime factorisations of my and ms, i.e. It is a product of prime numbers. So
n + 1 must have a prime factorisation as well.

2. Or there exists no m that divides n + 1, meaning n + 1 is prime, and its prime factorisation
is simply itself.

Therefore, n + 1 must have a prime factorisation. So, by (complete) induction we have shown that
all natural numbers n > 2 have prime factorisations.

(b)

Not using the fact:

Let n be a natural number which cannot be expressed as a square of any natural number, m?.

Assume that /n is rational,
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Vn =

, for some a € Ny, b € N5;;gcd(a,b) =1

Sl S|

a2
n—bfz
nb? = a®

Clearly, n is a factor of a?. Therefore, by our assumption, there exists no natural number m such
that nb? = (mb)? = a?. i.e: No natural number m exists such that a = mb, so n must be a factor
of a, in order for a to be a natural number such that n to be a factor of a? as shown. After we
conclude this fact;

a = nk for some k € Ny

nb* = (nk)?
nb? = n2k?
b2 = nk?

By the same argument as above, we see that n must also be a factor of b. Thence, ged(a,b) = n.
However, this contradicts our assumption that n is rational and thus can be expressed as { such
that ged(a,b) = 1. So, for all natural numbers, n, such that it cannot be expressed as a square of

any natural number, \/n must be irrational.

Using the fact:

Let n be a natural number such that /n be rational, i.e.:

Vn = %7 for some a € Ny, b € N3 q;ged(a,b) =1
a2
"=
nb? = a?

Since we know prime factorisation is unique (by the information given), and nb®> = a?, this means
that nb?> and a® must have the same prime factorisation, comprising of exactly the same prime
factors of the same powers. Notice that the prime factorisation of a? and b® must both consist of
prime factors all of even powers. Therefore, the prime factorisation of n must also consist of prime

factors of power 2, i.e.: there is some natural number n = m?2.

(Because since all prime factors of b* have even powers, if n had prime factor(s) of odd power(s), nb?
would have prime factor(s) of odd power(s) which contradicts the fact that all prime factors of a® have even
powers.)

(Prime factors and powers here refer to that of in their prime factorisations obviously)

Conversely, if there exists some natural number m such that n = m?, \/n = vm2 = m which is
trivially rational.

Thus, we can conclude that \/n is a rational number iff there exists some natural number m such
that n = m?, and is irrational otherwise.
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(c)

Let n, k be natural numbers such that {/n is rational, i.e.:

n = %, for some a € Ng,b € N>q;ged(a,b) =1
ok
"=
nb* = ¥

We know that prime factorisation is unique and nb* = a*, this means that nb* and a* have the
same prime factorisation, comprising of exactly the same prime factors, with the same powers each
of which is some factor of k.

Since the prime factors of b* already have powers which are factors of k, therefore, this must also
be true for n (in order for nb* = a*), which would mean n = m* for some natural number m.

To see this, consider when n has a prime factor not of factor k, then nb* would also have some prime factor
not being a factor of k. But this would violate what we said above that nb*® = a* (that a*, and hence nb¥,

must have prime factors of powers which are factors of k)

Conversely, let 7, m, k be natural numbers such that n = m”*. Rather easily, we see that {/n =
V/mF = m which is a rational number.

So, we can conclude that {/n is rational iff n = m* for some natural number, m, and is irrational
otherwise.

(d) x Good Try still! :)

Assume that there are only n number of primes.

Let the set I = {i|i € NAi < n}. Now, taking the product of all primes p,, and adding 1,

(I

Given some arbitrary kth prime number, pg, where 1 < k < n;

(1n) +1

Pk
1
= H pi | +—
ieI\{k} Pk

11 pi is a natural number, while pik is an noninteger rational number. So, their sum is a nonin-
i€ I\{k}
teger too. Therefore, as our selection of p, was arbitrary, this means that our (H pi> + 1 does not
il
have any divisors (other than 1 and itself), meaning it must be prime! However, this contradicts
our assumption that there are only a finite n number of primes. Thence, there must be an infinite
number of prime numbers!

Answer
(a) Yeah should be good (b) Should be ok (c¢) Should be good too (d) Wrong rip, note that
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(H pi> + 1 is not necessarily prime. But given a collection of n prime numbers, the (n + 1)th
i€l

prime number is less than or equal to (H p:) + 1.
il
Good try nonetheless!

17. (a) Suppose that every number < n can be written as a product of primes. If
n > 1 is not a prime, then n = ab for a, b < n. By assumption, a and b are each
products of primes, so n = ab is also.

(b) If /n = a/b, then nb®> = a2, so the factorization into primes of nb? and of
a? must be the same. Now every prime appears an even number of times in the
factorization of @2, and of b2, so the same must be true of the factorization of n.
This implies that n is a square.

(c) Repeat the same argument, using the fact that every prime occurs a multiple of
k times in a* and b

(d) If py,..., pp were the only primes, then (py - p2--- pn) + 1 could not be a
prime, since it is larger than all of them (and is not 1), so it must be divisible by
a prime. But py,..., p, clearly do not divide it, a contradiction. (Although this
is a proof by contradiction, it can be used to obtain some positive information: If
P1, ..., Py are the first n primes, then the (n + 1)* prime is < (py - p -+ - pn) + 1.
It is not necessarily true, however, that the number (p; - p2--- pn) + 1 is a prime;
for example, (2-3-5-7-11-13) 4+ 1 = 30,031 = 59 -509.)

46



18. (Rational Root Theorem)
*¥18. (a) Prove that il x satisfies
Xt a X" e+ ap =0,

for some integers a,_ |, ... , ap, then x is irrational unless x is an integer.
(Why is this a generalization of Problem 177)

(b) Prove that V6 — V2 — /3 is irrational.

LY 3 PR . - 5 - ~

(c) Prove that V2 4+ V2 is irrational. Hint: Start by working out the first 6

powers of this number.

(a)

Assume there exists some rational noninteger x such that it satisfies the equation given, i.e. x = %
for some b € Z\{0} and ¢ € Z\{0, 1, —1} such that b # ¢ and ged(b, ¢) = 1, then:

n—1
"+ E a;x' =0
i=0

n—1
pr = — E aibzcnfz
i=0
_ n n—1 n—1
= —agc" — arbe — s —ap_1b"" e
= c(—apc" ! — arbc” " — . — an_lbnfl)
We see that b" is equal to ¢ times an integer which means c|b".

(apc™ ! +arbc® 2 4 -+ ap—1b7~1 is an integer as its just a sum of products of integers)

Since we know ged(b,¢) = 1, ¢ is not just b to some natural power, this means that ¢|b in order
for ¢|b™. However, this leads us to the conclusion that ged(b,¢) > ¢ > 1 (as |¢| > 1), obviously
contradicting the assumption that ged(b, ¢) = 1.

So, there must not exist any rational noninteger = that satisfies the given equation, i.e.: the x’s
that satisfy the given equation must be either irrational or an integer.

Equivalently, z is irrational unless x is an integer.

It is a generalisation of 17. as 17. uses an argument of natural numbers only, while we use an
argument of all real numbers.

QED. ®
(b)
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Let 2 = V6 — V2 — \/?;7 we see that;

2? =11+ 2V6 — 6v2 —4v/3
2? — 11 = 2(V6 — 3v2 — 2V/3)
(22 —11)? = 2* — 2227 + 121 = 144 — 48v/2 — 48v/3 4+ 48V/6
at — 2222 — 23 = 48(V6 — V2 — V/3)
z* — 222 — 487 — 23 =10
Since a monic polynomial with the root of z = v/6 — /2 — v/3 and integer coefficients exists, as well

as that v/6 — v/2 — /3 is obviously not an integer, by 18.(a), we know that v/6 — v/2 — /3 must
certainly be irrational.

(c) Teach me your ways, master. (I couldn’t solve this myself rip) Math Discord, Drake: (I phrased
this myself but yeah the main crucial parts come frm the disc)

Let z = V2 + /2. Now we see that:

r—V2=12
(z—V2)3 =2
2% — 3v22% 4+ 62 +2v2 =2
2?4 6z — 2= (322 — 2)V2
(2% 4+ 62 — 2)% = 2(322 + 2)?
25 + 122" — 423 + 3622 — 24z + 4 = 2(921 + 1222 + 4)
2%+ 122" — 42® + 362% — 242 + 4 = 182" + 242” + 8
2% — 62t —42% +122% — 242 -4 =0
Therefore, we have found a monic polynomial with integer coefficients which has v/2 + /2 as its

root, meaning that by 18.(a), v/2 + V/2 must either be an integer or irrational number. Of course,
V2 + ¥/2 is not an integer, so it must be an irrational number.

Answer
Should be correct! :D
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19.

1\9./(1'0\1‘ Bernoulli’s inequality: If i = —1, then

(1+h)' =1+ nh

for any natural number n. Why is this trivial if i1 > 0?

In the cases where h < 1, We see easily the inequality holds true for n = 0:

(1+h)°=1=1+0n
(1+h)° >1+0hn

Suppose that the inequality is true for some n € Ny, then it holds too for n + 1;

(1+h)">14+nh
(1+h)" T > (1 +nh)(1 + h)
(1+h)" ™ > 14+ nh+h+nh?>>1+nh+hasnh®>>0
(1+h)" ™ >1+nh+h+nh?>=1=(n+1)h

This is trivial in the cases of h > 0 as by The Binomial Theorem,
1+hm)"=1 h h'
(1+h) + nh + ; (Z>

Every term in the sum is greater than or equal to 0,
so(L+h)"=1+nh+>7,(7)h" >1+nh.

Therefore, by induction, the inequality (1 + k)™ > 1 + nh is true for all n € N.

Answer

Think it shld be correct, seems ok
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20.

20.  The Fibonacci sequence ay. aa. as, ... is defined as follows:
a; =1,
ar» =1,
ay =d,_| +a,_» for n = 3.
This sequence, which begins 1,1,2,3,5, 8, ..., was discovered by Fibonacct

(circa 1175 1250), i connection with a problem about rabbits.  Fibonacci
assumed that an initial pair of rabbits gave birth to one new pair of rabbits
per month, and that afier two months cach new pair behaved similarly. The
number a, of pairs born in the nth month is a,_| + a,_», because a pair of
rabbits is born for cach pair born the previous month, and moreover each
pair born two months ago now gives birth o another pair. The number of
interesting results about this sequence is truly amazmg — there is even a Fi-
bonacci Association which publishes a journal, The Fibonacci Quarterly. Prove
that

1+V5)" [1-V5)

= =

Vs

One way of deriving this astonishing formula is presented in Problem 24-16.

iy =

In the case of n = 1,n = 2,n = 3, the formula holds true as:

(1+2ﬁ)1_ (1_2ﬁ)1 14V (1-VE) 2\/5:1:(11

V5 2v/5 2

(Hf)Q—(lzﬁ)z_1+2\/5+5—(1—2\/5+5)_2\/5_1_
V5 - 2v5 T2 T

(1+x/5>3_ <17\/5)3 [1+3\/5+15+5\/5—8(1—3\/5+15—5\/5)
2 2

V5 V5
3V5 4 3v5 +5v5 + 55
8V5

165
8V5

=2

az = as + aj
=141

()"~ ()
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Suppose the statement holds for all k£ such that k¥ < n where n > 3 and
k,n € No\{0,1,2}, then we shall see that it also holds for n + 1;

()" ()"

1v5\" 2 1—v3\" 2
:( ) (r225) - (%°) (1+i2s
V5
() (1= =88) - () (1-22)
B 2 4 2 2
N V5
(1+\/5>n (2+2\/5) _ (17\/5>” (272\/5)
B 2 4 2 4
N V5
() (25) ()" (=)
B 2 2 2 2
- V5
(1+\/g>’n+1 B (17\/5)7’771“1
B 2 2
- V5
() ()
Therefore, by complete induction, for all n € Nx1, a,, = ~— 7 2

QED. ®

Answer
Shld be correct
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Mr Cheng summation gns:

We see that the series’ denominators follows a pattern of 6-+6+(6+2)+(6+4)+(64+6)+(6+8)+- - -.
Thence, we can derive our formula for any term, s,, of the given sequence of real numbers:

n—2
Notice that s, has denominators are made up of n number of sixes and > ¢ number of twos. i.e.:
i=1
1
n—2 °
6n+2 > i
i=1

Sp =

Lemma 1
n

. n(n+1)
Proof:
We see that it trivially holds for n = 1,

Zizlzw

Now, assume it holds for some n, then it also holds for n + 1;

n+1 n
di=nt14> i
i=1 i=1
2n+2 n(n+1)
2 + 2
M+2+n’+n
2
n?+3n+2
2
_(n+1)(n+1+1)
2

Therefore, by induction, Y i = @ holds for all natural n.
i=1

Applying Lemma 1 onto our formula for s,
n—2 -1
Spn = <6n + 2 Z z)
i=1
~1
-2 —24+1
e[ E2222)
2

= (6n+n?+3n+2)""
=m*+3n+2)7"

1
T n243n+42

Now, all that is left is to find and proof an explicit formula for 3 s,:
i=1

Observe that we can decompose our into two partial fractions:

1
n24+3n+2
1 1 1 1

2 +3n+2 n+1)(n+2) n+1 n+2
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If we add s,, with s,1, some terms cancel out:

1

1 1 1 1 1
(n+1)(n+2)+(n+1+1)(n—|—1+2)7n+27n+2+n+27n+3
1 1
n+1l n+3
This can be easily extended for > s,, as we see;
i=1
Pl lyl 111
~" 2 3 3 4 m m+1 m+1l m+2
11
2 m+2

Proof:
This is trivially true in the case of m =1,

i 1 - 1 111
243i+2 1+434+2 6 2 142

i=1

Now, suppose that this is true for some natural m, then it also is true for m + 1;

m—+1 1 B 1 m 1
; 2+ 3i+2 (m+1)2+3(m+1)+2+;i2+3i+2
B 1 11
T i5m+6 2 mi2
B 1 1 m+3
 (m+2)(m+3) +§_ (m+2)(m + 3)
1 m+ 2
T2 (m+2)(m+3)
1 1
2 m+1+42
Therefore, by induction, in: Sn = 3 — s 1S true for all natural m.

i=1
We can FINALLY apply our last step!

(oo}

E s; = lim E Si
m—00

i=1 =

i L 1
_7,~>002 m—|—2

. 1
=—— lim ——
=--0

We can also prove lim,, #“ = 0 using the epsilon-delta definition of the limit.

We need to find a choice for M such that;

1
VEHMVm(e>OAm>M:> ’—0‘<e)
m+ 2
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Note that:

Our choice of M is rather obvious here, we choose M = é

1
’ ‘<m+2|<
m+ 2 €

1 ‘ 1
7_0 < =
m + 2 €

So, we have proven that
1 1
VedMVm |e>0Am > —-= |—— —0| <e¢
€ m 4+ 2

So, we have shown and proven that the sum of this infinite series is %

Find max(x?y) if x+y=2022.

Rearranging the above condition, we get y = —z + 2022.
Substituting it into our max(x2y), we get that max(x?y) = max(—a® + 2022x?).
Now let 9(x) = —a3 + 202222,

did(x)

= —322 + 4044z
dx

To find the maximum value of J(x), we take dz(f) =0:

di(x)
dx
327 + 4044z = 0
2(—3z +4044) = 0
r=00R x=1348

Rather trivially, we see that = 0 must not be the maximum point:
9(0) = 0 < ¥(1348) = 1247280896

d*9(z)
d?y
() = 12132 <0
dz® | ,_1348
We can now be certain that 9(1348) must be the maximum value of ¥(z) = —a3 + 202222 = 22y.

So, max(z2y) = —(1348)3 + 2022(1348)% = 1224728096.
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When you are in inline math mode (i.e. $ $) or your expression is very big in display mathmode
and you use the big symbols, with \sum_{i = 0}"{n} you’'ll get:

2z (1)

But if you add in \limits, i.e. \sum\limits_{i = 0}"{n} , you get:

> £0)
1=0
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