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Definitions and Theorems

0.1 Axioms

1. Axiom of Extensionality

∀A∀B[(x ∈ A ⇐⇒ x ∈ B) =⇒ A = B]

2. Empty Set Axiom
∃∅∀x(x /∈ B)

This can actually be derived from other axioms already; The Axiom of Infinity guarantees the existence of a

set, A, thus by using a Subset Axiom, we can construct the empty set, ∅, as x ∈ ∅ ⇐⇒ (x ∈ A ∧ x ̸= x)

3. Pairing Axiom / Axiom of Pairing
For any sets u, v, there exists a set B containing (only) u, v.

∀u∀v∃B∀x[x ∈ B ⇐⇒ (x = u ∨ x = v)]

4. Union Axiom / Axiom of Union

∀A∃B∀x[x ∈ B ⇐⇒ ∃b(b ∈ A ∧ x ∈ b)]

5. Power Set Axiom
∀A∀B∀x(x ∈ B ⇐⇒ x ⊆ A)

where we define ⊆ as ∀x∀A(x ⊆ A ⇐⇒ ∀y(y ∈ x =⇒ y ∈ A))

6. Axiom Schema of Specifiation / Subset Axioms:

∀t1, . . . , tk∀A∃B∀x(x ∈ B ⇐⇒ [x ∈ A ∧ φ(t1, · · · , tk, A)])

Extra Stuff for the Axiom Schema of Specifiation.

7. Axiom of Infinity / Infinity Axiom

∃A[∅ ∈ A ∧ ∀a(a ∈ A =⇒ a+ ∈ A)]

8. Axiom Of Choice / Choice Axiom

(a) First Form: For all relations R, there exists a function F such that F ⊆ R and
domF = domR.

(b) Second Form: The Cartesian product of nonempty sets is always nonempty. That is, if H
is a function with domain I and if H(i) ̸= ∅, then there exists a function f with domain
I such that (∀i ∈ I)f(i) ∈ H(i).
I think we can also state this more formally as;

∀I∀H∀A

[
(H : I → A ∧H(i) ̸= ∅) =⇒ ∃f

(
f : I →

⋃
i∈I

H(i) ∧ f(i) ∈ H(i)

)]

Equivalently, we can also say that for any set X of nonempty sets, there exists a choice
function f that is defined on X and maps each set of X to an element of the set:

∀X
(
∅ /∈ X =⇒ ∃f

[
f : X →

⋃
X ∧ ∀A(A ∈ X =⇒ f(A) ∈ A)

])
.
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9. Axiom of Regularity / Regularity Axiom

∀A[A ̸= ∅ =⇒ ∃m(m ∈ A ∧m ∩A = ∅)]

10. Replacement Axioms / Axiom Schema of Replacement
(Note to self: I haven’t read the chapter that covers this yet, so I just slapped this in basically directly from EEOST)

For all formulas ϕ(x, y) not containing the B, the following is an axiom:

∀t1 · · · ∀tk∀A
(
(∀x ∈ A)∀y1∀y2

(
[ϕ(x, y1) ∧ ϕ(x, y2)] =⇒ y1 = y2

)
=⇒ ∃B∀y[y ∈ B ⇐⇒ (∃x ∈ A)ϕ(x, y)]

)

0.2 Chapter 2 — Axioms and Operations

Theorem 2A. There is no set to which every set belongs.

Proof:

Let A be a set; we will construct a set not belonging to A. Let B be a set such that:

B = {x ∈ A|x /∈ x}

We have, by the construction of B,
B ∈ B ⇐⇒ (B ∈ A ∧ B /∈ B)

Assume B ∈ A, then
B ∈ B ⇐⇒ B /∈ B

This statement is obviously a contradiction (always false) since if B ∈ B is true, then B /∈ B which is ¬(B ∈ B) must

be false. Therefore, it must be the case that B /∈ A.

Theorem 2B. For any nonempty set A, there exists a unique set
⋂
A such that for any x ∈

⋂
A,

x belongs to every member of A,

∀x
[
x ∈

⋂
A ⇐⇒ ∀α(α ∈ A =⇒ x ∈ α

]
Proof (that such a set exists) :

We are given that A is nonempty; let c be some fixed member of A. Then by a subset axiom there is a set
⋂

A such that
for any x,

x ∈
⋂

A ⇐⇒ x ∈ c ∧ ∀α(α ∈ A ∧ α ̸= c ∧ x ∈ α)

⇐⇒ ∀α(α ∈ A ∧ x ∈ α)

Uniqueness follows from extensionality
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Definition. n-tuples

We define the 1-tuple ⟨x⟩ = x

An ordered pair is defined in the following way:

⟨x, y⟩ := {{x}, {x, y}}

An n-tuple is defined recursively:

⟨x, y, z⟩ := ⟨⟨x, y⟩ , z⟩
⟨x1, x2, · · · , xn⟩ = ⟨⟨x1, x2, · · · , xn−1⟩ , xn⟩

Or we could also define an n-tuple as a function (for all n > 3)

t : {i ∈ N|1 ⩽ i ⩽ n} =⇒ S

(Does not cause a contradiction cos we defined a 2-tuple, which are the elements of this set)
(Using this definition we also justify the definition of the 0-tuple as ∅, since the function t : ∅ → S is the empty set,
i.e. t = ∅)

Let an ordered pair, p = ⟨x, y⟩; the first coordinate, π1(p) can be extracted by:

π1(p) =
⋃(⋂

p
)

The second coordinate, π2(p), can be extracted similarly,

π2(p) =
⋃{

x ∈
⋃

p
∣∣∣ (⋃ p ̸=

⋂
p
)

=⇒ x /∈
⋂

p
}

0.3 Chapter 3 — Relations and Functions

Theorem 3A. ⟨u, v⟩ = ⟨x, y⟩ iff u = x and v = y.

Proof:

One direction is trivial; if u = x and v = y, then ⟨u, v⟩ is the same thing as ⟨x, y⟩.
To prove the interesting direction, assume that ⟨u, v⟩ = ⟨x, y⟩, i.e.,

{{u}, {u, v}} = {{x}, {x, y}}.

Then we have
{u} ∈ {{x}, {x, y}} and {u, v} ∈ {{x}, {x, y}}.

From the first of these we know that either

(a) {u} = {x} or (b) {u} = {x, y},

and from the second we know that either

(c) {u, v} = {x} or (d) {u, v} = {x, y}

First suppose (b) holds; then u = x = y. Then (c) and (d) are equivalent, and tell us that u = v = x = y. In this case
the conclusion of the theorem holds. Similarly if (c) holds, we have the same situation.
There remains the case in which (a) and (d) hold, From (a) we have u = x. From (d) we get either u = y or v = y. In
the first case (b) holds; that case has already been considered. In the second case, we have v = y as desired.

Lemma 3B. If x ∈ C and y ∈ C, then ⟨x, y⟩ ∈ PP(C).

Proof:

As the following calculation demonstrates, the fact that the braces in {{x}, {x, y}} are nested to a depth of 2 is responsible
for the two applications of the power set operation:

x ∈ C ∧ y ∈ C

{x} ⊆ C ∧ {y} ⊆ C

{x} ∈ PC ∧ {y} ∈ PC

{{x}, {x, y}} ⊆ PC

{{x}, {x, y}} ∈ PPC
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Corollary 3C. For any sets A and B, there is a set whose members are exactly the pairs ⟨x, y⟩
with x ∈ A and y ∈ B.

Proof:

From a subset axiom we can construct

{w ∈ PP(A ∪ B)|w = ⟨x, y⟩ ∧ x ∈ A ∧ y ∈ B}

Clearly this set contains only pairs of the desired sort; by the preceding lemma, it contains them all.

This corollary justifies our earlier definition of the Cartesian product, A × B.

Definition. The Binary Cartesian Product

A×B := {⟨x, y⟩ |x ∈ A ∧ y ∈ B} = {w ∈ PP(A ∪B)|w = ⟨x, y⟩ ∧ x ∈ A ∧ y ∈ B}

Definition. Relations

A relation, B, is a set of ordered pairs,

∀z[z ∈ R ⇐⇒ ∃x∃y(z = ⟨x, y⟩)]

An n-ary relation, N, is a set of n-tuples,

∀z(z ∈ N) ⇐⇒ ∃e1, e2, · · · , en(z = ⟨e1, e2, · · · , en⟩)

M is single-rooted iff for each y ∈ ran R, there exists one unique x such that xMy. i.e.: M will
have the following property

(x1My ∧ x2My) ⇐⇒ x1 = x2

We define an n-ary relation on A to be a set of n-tuples with all components
in A.
i.e. Let M be an n-ary relation on A, then

1. ∀z(z ∈M) ⇐⇒ ∃e1, e2, · · · , en(e1, e2, · · · , en ∈ A ∧ z = ⟨e1, e2, · · · , en⟩)

2. M ⊆ An

Definition. We define the domain of R (domR), the range of R (ranR)m and the field (fldR) by

x ∈ domR ⇐⇒ ∃y⟨x, y⟩ ∈ R,

x ∈ ranR ⇐⇒ ∃t⟨t, x⟩ ∈ R,

fldR = domR ∪ ranR

Lemma 3D. If ⟨x, y⟩ ∈ A, then x, y ∈
⋃⋃

A

Proof:

We assume that {{x}, {x, y}} ∈ A. Consequently, {x, y} ∈
⋃

A since it belongs to a member of A. And from this we

conclude that x ∈
⋃⋃

A and y ∈
⋃⋃

A.

This lemma indicates how we can use subset axioms to construct the domain and range of R:

domR :=
{
x ∈

⋃⋃
A
∣∣∣∃y ⟨x, y⟩ ∈ R

}
ranR :=

{
y ∈

⋃⋃
A
∣∣∣∃x ⟨x, y⟩ ∈ R

}
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Definition. Functions

A function is a relation F such that for all x in domF , there is only one y such that xFy.

Basically, a function is a relation with the key property that: If ⟨x, y⟩ ∈ F and ⟨x, g⟩ ∈ F , then y = g, i.e. 1 output for
every input (Single-valued).

An n-ary function is a an (n + 1)-ary relation whose elements are (n + 1)-tuples.
An n-ary operation is one is a function O : Sn → S.

Definition. ICRI — Inverse, Composition, Restriction, Image

1. (a) The inverse (preimage) of F is the set / relation

F−1 = {⟨y, x⟩ |xFy}

2. (b) The composition of F and G is the set

F ◦G = {⟨x, y⟩ | ∃t(xGt ∧ tFy)}

3. (c) The restriction of F to A is the set

F ↾ A = {⟨x, y⟩ |xFy ∧ x ∈ A}

(d) The image of A under F is the set

F JAK = ran(F ↾ A) = {y | (∃x ∈ A)xFy}

These operations are most commonly applied to functions, sometimes to relations, but can actually be defined for arbitrary
sets A,F, and G. (By ”arbitrary” sets, the author probably just mean relations)

Theorem 3E. For a set F , domF−1 = ranF and ranF−1 = dom F . For a relation F ,
(F−1)−1 = F .

Proof (Mine):

domF
−1

= {y | ∃x(yF−1
x)} ranF

−1
= {x | ∃y(yF−1

x)} (F
−1

)
−1

= {⟨x, y⟩ | yF−1
x}

= {y | ∃x(xFy)} = {x | ∃y(xFy)} = {⟨x, y⟩ | xFy}
= ranF = domF = F

Theorem 3F. For a set F , F−1 is a function iff F is single-rooted. A relation F is a function iff
F−1 is single-rooted.

Proof (Mine):

Assume that F is single-rooted first, i.e. ∀x1∀x2[(x1Fy ∧ x2Fy) =⇒ x1 = x2].

This is identical to ∀x1∀x2[(yF
−1x1 ∧ yF−1x2) =⇒ x1 = x2]. Therefore, F−1 is single-valued and hence a function.

Conversely, now let F−1 be a function, i.e. ∀x1∀x2[(yF
−1x1 ∧ yF−1x2) =⇒ x1 = x2].

Again, this is the same as ∀x1∀x2[(x1Fy ∧ x2Fy) =⇒ x1 = x2]. Which means F is indeed single-rooted.

Thus, it has been proven that, for a set F , F−1 is a function iff F is single-rooted.

Utilising Theorem 3E and the previous result, the relation (F−1)−1 3E
= F is a function iff F−1 is single-rooted.

Wherefore, a relation F is a function iff F−1 is single-rooted.
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Theorem 3G. Assume that F is an injective function. If x ∈ domF , then F−1(F (x)) = x. If
y ∈ ranF , then F (F−1(y)) = y.

Proof (Mine):

x ∈ domF =⇒ F
−1

(F (x)) = F
−1J{y | xFy}K where |{y | xFy}| = 1 since F is a function

= {x | yF−1
x ∧ xFy}

= x since F
−1

is a function by Theorem 3F

Thus, it is proven that if x ∈ domF , then F−1(F (x)) = x.

y ∈ ranF =⇒ F (F
−1

(y)) = F J{x | yF−1
x}K where |{x | yF−1

x}| = 1 since F
−1

is a function

= {y | xFy ∧ yF
−1

x}
= y since F is a function

So, If y ∈ ranF , then F (F−1(y)) = y.

Proof (Enderton’s):

Suppose that x ∈ domF ; then ⟨x, F (x)⟩ ∈ F and ⟨F (x), x⟩ ∈ F−1.

Thus F (x) ∈ domF−1. F−1 is a function by Theorem 3F, so x = F−1(F (x)).

If y ∈ ranF , then by applying the first part of the theorem to F−1 we obtain the equation (F−1)−1(F−1(y)) = y. But

(F−1)−1 = F .

Theorem 3H. Assume that F and G are functions. Then F ◦G is a function, its domain is

{x ∈ domG |G(x) ∈ domF}

and for x in its domain, (F ◦G)(x) = F (G(x)).

Proof (Mine):

dom(F ◦ G) = dom{⟨x, y⟩ | ∃t(xGt ∧ tFy)} = {x | ∃t∃y(xGt ∧ tFy)} = {x ∈ domG |G(x) ∈ domF}
(F ◦ G)(x) = {y | x(F ◦ G)y} = {y | ∃t(xGt ∧ tFy)} = F J{t | xGt}K = F (G(x))

Theorem 3I. For any sets F and G,

(F ◦G)−1 = G−1 ◦ F−1

Theorem 3J. Assume that F : A→ B, and that A is nonempty.

(a) There exists a function G : B → A (a ”left inverse”) such that G ◦F is the identity function IA
on A iff F is injective.
(b) There exists a function H : B → A (a ”right inverse”) such that F ◦H is the identity function
IB on B iff F is surjective.

Theorem 3K. The following will hold for any sets (relations)

(a) The image of a union is the union of the images:

F JA ∪BK = F JAK ∪ F JBK and F
r⋃

A
z
=
⋃

{F JAK|A ∈ A}

(b) The image of an intersection is included in the intersection of the images:

F JA ∩BK ⊆ F JAK ∩ F JBK and F
r⋂

A
z
⊆
⋂

{F JAK|A ∈ A}

(c) The image of a difference / complement includes the difference / complement of the images:

F JAK\F JBK ⊆ F JA\BK

Equality holds if F is single-rooted.
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Corollary 3L. For any function G and sets A,B,A:

G−1
r⋃

A
z
=
⋃

{G−1JAK|A ∈ A},

G−1
r⋂

A
z
=
⋂

{G−1JAK|A ∈ A} for A ̸= ∅

G−1JA\BK = G−1JAK\G−1JBK.

Definition. AB
AB is read ”B-pre-A”, it is the collection of functions F from A into B.
AB = {F |F is a funtion ∧ F : A =⇒ B}. (Otherwise notated as BA)

Since F : A → B, F ⊆ A × B, so F ∈ P(A × B). Consequently, we can apply a subset axiom to
P(A×B) to construct the set of all functions from A into B.

Definition. Infinite Cartesian Products
Let I be an index set such that i ∈ I

∏
i∈I

X(i) :=

{
f : I →

⋃
i∈I

X(i)

∣∣∣∣∣(∀i ∈ I)[f(i) ∈ X(i)]

}

If there exists some i such that X(i) = ∅, then clearly
∏
i∈I

X(i) is empty. Conversely, suppose that

for all i, X(i) ̸= ∅, then we use the Axiom of Choice to show that
∏
i∈I

X(i) is nonempty.

Definition. R is an equivalence relation on A iff R is a binary relation on A that is reflexive on A,
symmetric and transitive:

1. R is reflexive on A, i.e. xRx for all x ∈ A

2. R is symmetric, i.e. for all x, y; if xRy then yRx.

3. R is transitive, i.e. for all x, y, z; if xRy and yRz, then also xRz.

Theorem 3M. If R is a symmetric and transitive relation, then R is an equivalence relation on
fldR.

This theorem deserves a precautionary note: If R is a symmetric and transitive relation on A, it does not follow that R
is an equivalence relation on A. R is reflexive on fldR, but fldR amy be a small subset of A.

Definition. The set [x]R is defined by

[x]R = {t |xRt}.

If R is an equivalence relation and x ∈ fldR, then [x]R is called the equivalence class of x modulo R.
If the relation R is fixed by the context, we may write just [x].

The existence of the set [x]R is guaranteed by a subset axiom, since [x]R ⊆ ranR. Furthermore, we can construct a set of
equivalence classes, such as {[x]R | x ∈ A}, since this set is in P(ranR)

Lemma 3N. Assume that R is an equivalence relation on A and that x, y ∈ R. Then

[x]R = [y]R iff xRy
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Definition. A partition Π of a set A is a set of nonempty subsets of A that are disjoint and
exhaustive, i.e.,

(a) No two different sets in Π have any common elements.
In other words, (∀x ∈ Π)(∀y ∈ Π)(x ̸= y =⇒ x ∩ y = ∅).
Or more formally, ∀x∀y[x ∈ Π ∧ y ∈ Π =⇒ (x ̸= y =⇒ x ∩ y = ∅)].

(b) Each element of A is in some set of Π.
That is, ∀x[x ∈ A ⇐⇒ (∃b ∈ Π)x ∈ b].
Or more formally, ∀x[x ∈ A ⇐⇒ ∃b(b ∈ Π ∧ x ∈ b)].

Theorem 3P. Assume that R is an equivalence relation on A. Then the set {[x]R |x ∈ A} of all
equivalence classes is a partition of A.

Proof:

Each equivalence class [x]R is nonempty (because x ∈ [x]R) and is a subset of A (because R is a binary relation on A).
The main thing we must prove is that the collection of equivalence classes is disjoint, i.e., part (a) of the above definition
is satisfied. So suppose that [x]R and [y]R have a common element t. Thus

xRt and yRt.

But then xRy and by Lemma 3N, [x]R = [y]R. (End of proof)

If R is an equivalence relation on A, then we can define the quotient set

A/R = {[x]R | x ∈ A}

whose members are the equivalence classes. (The expression A/R is read ”A modulo R.”) We also have the natural map
(or canonical map) φ : A → A/R defined by

φ(x) = [x]R

for x ∈ A.

Definition. If R is an equivalence relation on A, then we can define the quotient set

A/R = {[x]R |x ∈ A}

Definition. If R is an equivalence relation on A, then we can define the natural map (or canonical
map)

φ : A→ A/R φ(x) = [x]R

Definition. A function F is compatible with the relation R on A iff for all x and y in A

xRy =⇒ F (x)RF (y)

Theorem 3Q. Assume that R is an equivalence relation on A and that F : A → A. If F is
compatible with R, then there exists a unique F̂ : A/R→ A/R such that

F̂ ([x]R) = [F (x)]R for all x in A.(⋆⋆)

If F is not compatible with R, then no such F̂ exists. Analogous results apply to functions from
A×A into A.
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STheorem I. The Universal Property of The Quotient Set: If X is a set and ∼ an equivalence
relation on X, then the natural/canonical projection φ : X → X/∼ such that φ(x) = [x]∼ can
be formed. For any other set Y and function f : X → Y that respects ∼ , i.e (for all x and x′)
x ∼ x′ =⇒ f(x) = f(x′); there exists a unique function F̂ : X/∼ → Y such that f = F̂ ◦ φ:

X Y

X/∼

φ

f

F̂

On the contrary, if f does not respect ∼ , then there does not exist such a function F̂ : X/∼ → Y
such that f = F̂ ◦ φ.

Proof.

Definition. Let A be any set. A linear ordering on A (also called a total ordering on A) is a binary
relation R on A (i.e., R ⊆ A×A) meeting the following two conditions:

(a) R is a transitive relation; i.e., whenever xRy and yRz, then xRz.

(b) R satisfies trichotomy on A, by which we mean that for any x and y in A exactly one of the
three alternatives

xRy, x = y, yRx

holds.

Me: Note: In this case I think this definition is specifically a strict total order.

Theorem 3R. Let R be a linear ordering on A.

(i) There ix no x for which xRx ( Irreflexive)

(ii) For distinct x and y in A, either xRy or yRx (but never both) (Connected).

In fact, for a transitive relation on A, conditions (i) and (ii) are equivalent to trichotomy. A relation
meeting condition (i) is called irreflexive; one meeting condition (ii) is said to be connected on A.
Instead of R, we favor the symbol < for a linear ordering

(Even for a general relation, possibly without transitivity, I think (i)+(ii) should be equivalent to trichotomy)

Fact. A linear ordering R can never lead us in circles, e.g., there cannot exist a circle such as

x1Rx2, x2Rx3, x2Rx4, x4Rx5, x5Rx1.

This is because if we had such a circle, then by transitivity x1Rx1, contradicting part (i) of the
foregoing theorem.
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Definition. Hasse Diagrams, illustration of a linear ordering:
We represent the members of A by dots, placing the dot for x below the dot for y whenever x < y.
Then we add vertical lines to connect the dots. The resulting picture has the points of A stretched
out along a line, in the correct order.

(The adjective ”linear” reflects the possibility of drawing this picture.)

• 5

• 3

• 2

0

1

2

3

4

5

...

...

−2

−1

0

1

2

...

Hasse diagram of the set of all subsets of a three-element set, {x, y, z}, ordered by inclusion, (Partial-
Order):

{x, y, z}

{x, y} {x, z} {y, z}

{x} {y} {z}

∅

There are many ways to draw a Hasse diagram.
(E.g.: With arrow, without arrow, with circle as the node, just using the elements for the nodes, etc)
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0.4 Chapter 4 — Natural Numbers

Definition. Von Neumann construction: We define the symbols 0, 1, 2, 3 as

0 = ∅,
1 = {0} = {∅},
2 = {0, 1} = {∅, {∅}},
3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}.

Definition. For any set a, its successor a+ is defined by

a+ = a ∪ {a}.

In terms of the successor operation, the first few natural numbers can be characterized as

0 = ∅, 1 = ∅+, 2 = ∅++, 3 = ∅+++, . . .

Which are all distinct sets.

Definition. A set A is said to be inductive iff ∅ ∈ A and it is ”closed under successor,”
i.e.,

∀a(a ∈ A =⇒ a+ ∈ A).

Definition. A natural number is a set that belongs to every inductive set.

Theorem 4A. There is a set whose members are exactly the natural numbers.
(The set of all natural numbers is denoted by a lowercase Greek omega, ω.)

In terms of classes, we have

ω =
⋂

{A |A is inductive}

but the class of all inductive sets is not a set.

Theorem 4B. ω is inductive, and a subset of every other inductive set.

Fact. Since ω is inductive, we know that 0(= ∅) is in ω. It then follows that 1(= 0+) is in ω, as are
2(= 1+) and 3(= 2+). Thus 0, 1, 2, and 3 are natural numbers.

Unnecessary extraneous objects have been excluded from ω, since ω is the smallest inductive set.
This fact can also be restated as follows:

Induction Principle for ω: Any inductive subset of ω coincides with ω.

Theorem 4C. Every natural number except 0 is the successor of some natural number.

Self-Proof.

Definition. A Peano system is defined to be a triple ⟨N,S, e⟩ consisting of a set N , a function
S : N → N , and a member e ∈ N such that the following three conditions are met:

(i) e /∈ ranS.

(ii) S is injective.

(iii) Any subset A of N that contains e and is closed under S equals N itself.

Theorem 4D. ⟨ω, σ, 0⟩ is a Peano System.
Where σ is the restriction of the successor operation to ω, i.e. σ = {⟨n, n+⟩ |n ∈ ω}.

Self-Proof.
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Definition. A set A is said to be a transitive set iff every member of a member of A is itself a
member of A. We can state this equivalently in 4 ways: For all x;

x ∈ a ∈ A =⇒ x ∈ A, (1)⋃
A ⊆ A, (2)

a ∈ A =⇒ a ⊆ A, (3)

A ⊆ PA. (4)

In the previous chapter we defined a transitive relation while we defined a transitive set here. These are not the same

things. The context will make clear which sense of ”transitive” is wanted.

Theorem 4E. For a transitive set A, ⋃(
a+
)
= a.

Theorem 4F. Every natural number is a transitive set.

Self-Proof.

Theorem 4G. The set ω is a transitive set.

Self-Proof.

Recursion Theorem on ω: Let A be a set a ∈ A, and F : A → A. Then there exists a unique
function h : ω → A such that

h(0) = a,

and for every n ∈ ω,
h
(
n+
)
= F (h(n)).

The recursion theorem is in general false for systems not meeting the 3 conditions of Peano systems. So any correct

proof of recursion absolutely must make use of conditions (i)-(iii).

Theorem 4H. Let ⟨N,S, e⟩ be a Peano system. Then ⟨ω, σ, 0⟩ is isomorphic to ⟨N,S, e⟩, i.e., there
is a bijective function h : ω → N in a way that preserves the successor operation

h(σ(n)) = S(h(n))

and the zero element
h(0) = e.

0 1 2 3 · · ·

e S(e) S(S(e)) S(S(S(e))) · · ·
h

σ

S

Fig. 18. Isomorphism of Peano Systems.

Self-Proof.

Theorem 4H shows that the number system we have constructed is, ”to within isomorphism,” the only system satisfying

Peano’s postulates.

Definition. A binary operation on a set A is a function from A×A into A.
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Definition. Addition (+) is the binary operation on ω such that for any m and n in ω,

m+ n = Am(n).

When written (explicitly) as a relation,

+ = {⟨⟨m,n⟩, p⟩ |m ∈ ω ∧ n ∈ ω ∧ p = Am(n)}.

Theorem 4I.

m+ 0 = m,(A1)

m+ n+ = (m+ n)+.(A2)

Self-Proof.

Theorem 4J. For natural numbers m and n,

m · 0 = 0,(M1)

m · n+ = m · n+m.(M2)

Self-Proof.

Theorem 4K. The following identities hold for all natural numbers.

(1) Associative law for addition
m+ (n+ p) = (m+ n) + p.

(2) Commutative law for addition
m+ n = n+m.

(3) Distributive law
m · (n+ p) = m · n+m · p.

(4) Associative law for multiplication

m · (n · p) = (m · n) · p.

(5) Commutative law for multiplication

m · n = n ·m.

Self-Proof.

Definition. For natural numbers m and n, we define m to be less than n iff m ∈ n.

Definition. We define
m ∈− n iff (m ∈ n ∨m = n).

Lemma 4L. (a) For any natural numbers m and n,

m ∈ n iff m+ ∈ n+.

(b) No natural number is a member of itself.

Self-Proof.
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Trichotomy Law for ω For any natural numbers m and n, exactly one of the three conditions

m ∈ n, m = n, n ∈ m

holds.

Corollary 4M. For any natural numbers m and n,

m ∈ n iff m ⊂ n

and
m ∈− n iff m ⊆ n.

Theorem 4N. For any natural numbers m, n, and p,

m ∈ n ⇐⇒ m+ p ∈ n+ p.

If, in addition, p ̸= 0, then
m ∈ n ⇐⇒ m · p ∈ n · p.

Corollary 4P. The following cancellation laws hold for m, n, and p in ω:

m+ p = n+ p =⇒ m = n,

m · p = n · p and p ̸= 0 =⇒ m = n.

Self-Proof.

Well Ordering of ω Let A be a nonempty subset of ω. Then there is some m ∈ A such that m ∈− n
for all n ∈ A.

Note: Such an m is said to be least in A. The theorem asserts that every nonempty subset of ω has a least element.

The least element is always unique.

Corollary 4Q. There is no function f : ω → ω such that f(n+) ∈ f(n) for every natural number
n.

Self-Proof.

Strong Induction Principle for ω Let A be a subset of ω, and assume that for every n ∈ ω,

if every number less than n is in A, then n ∈ A.

Then A = ω.

Interesting Note: There seems, at first glance, that we are missing a critical assertion that 0 ∈ A. However, in
this particular form of the Strong Induction Principle for ω, it is actually completely unnecessary, because: Every
number less than 0 is in A vacuously. Which means, by our Strong Induction Hypothesis, 0 ∈ A! However, if we
were to tweak our Strong Induction Hypothesis to the form below, then we certainly need the presumption that 0 ∈ A:

if every number less than or equal to n is in A, then n+ ∈ A.

In this form, we cannot deduce 0 ∈ A because n+ ̸= 0 for all natural n by Theorem 4D.

Self-Proof.
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0.5 Chapter 5 — Construction of The Real Numbers

0.5.1 Integers

Definition. Define ∼ to be the relation on ω × ω for which

⟨m,n⟩ ∼ ⟨p, q⟩ iff m+ q = p+ n.

In more explicit (but less readable form), the above definition can be stated:

∼ = {⟨⟨m,n⟩, ⟨p, q⟩⟩ |m+ q = p+ n and all are in ω}.

Theorem 5ZA. The relation ∼ is an equivalence relation on ω × ω.

Self-Proof.

Definition. The set Z of integers is the set (ω × ω)/∼ of all equivalence classes of differences*.

*Where we call a pair of natural numbers ⟨m,n⟩ a difference; and an integer an equivalence class of differences

Lemma 5ZB. If ⟨m,n⟩ ∼ ⟨m′, n′⟩ and ⟨p, q⟩ ∼ ⟨p′, q′⟩, then

⟨m+ p, n+ q⟩ ∼ ⟨m′ + p′, n′ + q′⟩.

Self-Proof.

Definition. Define the addition operation, +Z to be the binary operation on Z so that for all
integers a and b,

a+Z b = [⟨m, p.n+ q⟩]
where a = [⟨m,n⟩] and b = [⟨p, q⟩]. Lemma 5ZB tells us that +Z is a well-defined function.

Theorem 5ZC. The operation +Z is commutative and associative:

a+Z b = b+Z a

(a+Z b) +Z c = a+Z (b+Z c) .

Theorem 5ZD. (a) 0Z is an identity element for +Z:

a+Z 0Z = a

for any a in Z.

(b) Additive inverses exist: For any integer a, there is an integer b such that

a+Z b = 0Z.

The inverse of a is denoted as −a. Then as the proof to Theorem 5ZD shows, −[⟨m,n⟩] =
[⟨n, n⟩].

Fact. Theorems 5ZC and 5ZD together say that Z wit the operation +Z and the identity element
0Z is an Abelian group.

Inverses are unique. That is, if a +Z b = 0Z and a +Z b
′ = 0Z, then b = b′. To prove this, observe

that
b = b+Z (a+Z b

′) = (b+Z a) +Z b
′ = b′.

(This proof works in any Abelian group.)
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Definition. Inverses provide us with a subtraction operation, which we define by the equation

b− a = b+Z (−a).

Lemma 5ZE. If ⟨m,n⟩ ∼ ⟨m′, n′⟩ and ⟨p, q⟩ ∼ ⟨p′, q′⟩, then

⟨mp+ nq,mq + np⟩ ∼ ⟨m′p′ + n′q′ +m′q′ + n′p′⟩.

Definition. Define the multiplication operation, ·Z to be the binary operation on Z so that for all
integers a and b,

a ·Z b = [⟨mp+ nq,mq + np⟩]

where a = [⟨m,n⟩] and b = [⟨p, q⟩] (and here we write as usual, mp in place of m · p). Lemma 5ZE tells us that

·Z is a well-defined function.

Theorem 5ZF. The multiplication operation ·Z is commutative, associative, and distributive over
+Z:

a ·Z b = b ·Z a
(a ·Z b) ·Z c = a ·Z (b ·Z c)
a ·Z (b+Z c) = (a ·Z b) +Z (a ·Z c)

Self-Proof of Commutativity.

Theorem 5ZG. (a) The integer 1Z is a multiplicative identity element:

a ·Z 1Z = a

for any integer a.

(b) 0Z = 1Z.

(c) Whenever a ·Z b = 0Z, then either a = 0Z or b = 0Z.

Part (c) is sometimes stated: There are no “zero divisors” in Z.
Self-Proof.

Fact. In algebraic terminology, we can say that Z together with +Z, ·Z, 0Z, and 1Z forms an integral
domain. This means that:

(i) Z together with +Z and 0Z forms an Abelian group (Theorems 5ZC and 5ZD.)

(ii) Multiplication is commutative and associative, and is distributive over addition (Theorem
5ZF)

(iii) 1Z is a multiplicative identity (different from 0Z), and no zero divisors exist (Theorem 5ZG).

Lemma 5ZH. If ⟨m,n⟩ ∼ ⟨m′, n′⟩ and ⟨p, q⟩ ∼ ⟨p′, q′⟩, then

m+ q ∈ p+ n iff m′ + q′ ∈ p′ + n′.

Definition. Define the ordering relation <Z on Z to be such that for all integers a and b,

a <Z b iff m+ q ∈ p+ n.

where m, n, p, and q are chosen so that a = [⟨m,n⟩] and b = [⟨p, q⟩].

Lemma 5ZH shows that this yields a well-defined relation <Z on the integers.
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Theorem 5ZI. The relation <Z is a linear ordering relation on the set of integers.

Self-Proof.

Definition. An integer b is called positive iff 0Z <Z b. It is easy to check that

b <Z 0Z iff 0Z <Z −b.

Thus, a consequence of trichotomy is the fact that for an integer b, exactly one of the three alter-
natives

b is positive, b is zero, − b is positive

holds.

Theorem 5ZJ. The following are valid for any integers a, b, and c:

(a) a <Z b ⇐⇒ a+Z c <Z b+Z c.

(b) If 0Z <Z c, then
a <Z b ⇐⇒ a ·Z c <Z b ·Z c.

This shows that addition preserves order, as does multiplication by a positive integer.

Corollary 5ZK. For any integers a, b, and c the cancellation laws hold:

a+Z c = b+Z c =⇒ a = b,

a ·Z c = b ·Z & c ̸= 0Z =⇒ a = b.

Self-Proof.

Fact. Although ω is not actually a subset of Z, nonetheless Z has a subset that is “just like” ω. To
make this precise, define the function E : ω → Z by

E(n) = [⟨n, 0⟩].

(E.g.: E(0) = 0Z and E(1) = 1Z.)

The following theorem, in algebraic terminology, says that E is an “isomorphic embedding” of the
system ⟨ω,+, ·,∈ω⟩ into the system ⟨Z,+Z, ·Z, <Z⟩. That is, E is an injective function that preserves
addition, multiplication, and order.

Theorem 5ZL. E is injective, and satisfies the following properties for any natural numbers m
and n:

(a) E(m+ n) = E(m) +Z E(n).

(b) E(mn) = E(m) ·Z E(n).

(c) m ∈ n iff E(m) <Z E(n).

Fact. We can now give a precise counterpart to our motivating guideline that the difference ⟨m,n⟩
should name m− n. For any m and n,

[⟨m,n⟩] = E(m)− E(n).

Note. Henceforth, we will streamline our notation by omitting the subscript “Z” on +Z, ·Z, <Z, 0Z,
1Z, etc. Furthermore, a · b will usually be written as just ab.
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0.5.2 Rational Numbers

Definition. By a fraction, we mean an ordered pair of integers, the second component of which
(call the denominator) is nonzero.

Definition. Define ∼ to be the binary relation on Z× Z′ for which

⟨a, b⟩ ∼ ⟨c, d⟩ iff a · d = cḃ.

Definition. The set Q of rational numbers is the set (Z×Z′)/∼ of all equivalence classes of fractions.

Theorem 5QA. The relation ∼ is an equivalence relation on Z× Z′.

Self-Proof.

Lemma 5QB. If ⟨a, b⟩ ∼ ⟨a′, b′⟩ and ⟨c, d⟩ ∼ ⟨c′, d′⟩, then

⟨ad+ cb, bd⟩ ∼ ⟨a′d′ + c′b′, b′d′⟩.

Note. We use the same symbol “∼” that has been used for other equivalence relations, but as we
only discuss one equivalence relation at a time, no confusion should result.

Definition. Define the binary operation +Q on Q with

[⟨a, b⟩] +Q [⟨c, d⟩] = [⟨ad+ cb, bd⟩].

Note that bd ̸= 0 since b ̸= 0 and d ̸= 0. Hence, ⟨ad + cb, bd⟩ is a fraction. Lemma 5QB tells us that the binary

operation +Q is well-defined.

Theorem 5QC. (a) Addition +Q is associative and commutative:

(q +Q r) +Q s = q +Q (r +Q s),

r +Q s = s+Q r.

(b) 0Q is an identity element for +Q:
r +Q 0Q = r

for any r in Q.

(c) Additive inverses exist: For any r in Q there is an s in Q such that r +Q s = 0Q.

Fact. The set Q with the binary operation +Q on Q and the additive identity 0Q ∈ Q together form
the Abelian group ⟨Q,+Q, 0Q⟩.

Fact. As in any Abelian group, the inverse of r ∈ Q here is unique; we denote it as −r. The proof
of Theorem 5QC shows that −[⟨a, b⟩] = [⟨−a, b⟩].

Lemma 5QD. If ⟨a, b⟩ ∼ ⟨a′, b′⟩ and ⟨c, d⟩ ∼ ⟨c′, d′⟩, then

⟨ac, bd⟩ ∼ ⟨a′c′, b′d′⟩.

Definition. ·Q is the binary operation on Q defined by

[⟨a, b⟩] ·Q [⟨c, d⟩] = [⟨ac, bd⟩].

Lemma 5QD verifies that ·Q is indeed well-defined.
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Theorem 5QE. Multiplication of rationals is associative, commutative, and distributive over ad-
dition:

(p ·Q q) ·Q r = p ·Q (q ·Q r),
q ·Q r = r ·Q q,

p ·Q (q +Q r) = (p ·Q q) +Q (p ·Q r).

Fact. The new property that the rationals have (and that integers lack) is the existence of multi-
plicative inverses for nonzero (rational) numbers, as seen in Theorem 5QF.

Theorem 5QF. For every nonzero r in Q there is a nonzero q in Q such that r ·Q q = 1Q.

Theorem 5QG. If r and s are nonzero rational numbers, then r ·Q s is also nonzero.

Self-Proof.

Enderton’s (General) Proof.
Enderton’s proof works for any field, since fields have multiplicative inverses for all their nonzero elements and

x · 0 = 0 in any commutative ring with identity.

Fact. The nonzero rationals with multiplication form an Abelian group, ⟨Q− {0Q}, ·Q, 1Q⟩.

Fact. The proof of Theorem 5QF shows that

[⟨a, b⟩]−1 = [⟨b, a⟩].

Fact. (Multiplicative) Inverses provide us with a division operation. For a nonzero rational r we
can define

s÷ r = s ·Q r−1.

Fact. The algebraic concept exemplified by the rational numbers is the concept of a field. To say
that ⟨Q,+Q, ·Q, 0Q, 1Q⟩ is a field means that it is an integral domain with the further property
that multiplicative inverses exist. (Other examples of fields are provided by the real numbers and the complex

numbers.) Cool fact! The method we have used to extend Z to Q can be applied to extend any
integral domain to a field.

Fact. Since [⟨a, b⟩] = [⟨−a,−b⟩], every rational number can be represented by some fraction with a
positive denominator. (Recall that for nonzero integers b, either b or −b is positive.)
(This fact is critical to define our linear ordering <Q.)

Lemma 5QH. Assume that ⟨a, b⟩ ∼ ⟨a′, b′⟩ and ⟨c, d⟩ ∼ ⟨c′, d′⟩. Further assume that b, b′, d, and
d′ are all positive. Then,

ad < cb iff a′d′ = c′b′.

Self-Proof.

Definition. The linear ordering <Q on Q is so that

[⟨a, b⟩] <Q [⟨c, d⟩] iff ad < cb

whenever b and d are positive. Again, the previous Lemma 5QH verifies that our linear ordering <Q is well-

defined.

Theorem 5QI. The relation <Q is a linear ordering on Q.

Self-Proof.
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Definition. Call a rational number q positive iff 0Q <Q q. Thus, r <Q 0Q iff 0Q <Q −r. Then as a
consequence of trichotomy, for any rational number r, exactly one of three alternatives

r is positive, r is zero, −r is positive

holds.

Definition. We define the absolute value |r| of r by

|r| =

{
−r if −r is positive,

r otherwise.

Then, 0Q ≤Q |r| for every r.

Theorem 5QJ. Let r, s, and t be rational numbers.

(a) r <Q s iff r +Q t <Q s+Q t.

(b) If t is positive, then
r <Q s iff r ·Q t <Q s ·Q t.

Fact. The two preceding theorems (5QI and 5QJ) state that ⟨Q,+Q, ·Q, 0Q, 1Q, <Q⟩ is an ordered
field.

Theorem 5QK. The following cancellation laws hold for any rational numbers.

(a) If r +Q t = s+Q t, then r = s.

(b) If r ·Q t = s ·Q t and t is nonzero, then r = s.

Enderton’s (General) Proof.
(works in any Abelian group)

Fact. Although Z is not a subset of Q, there exists an embedding function E : Z → Q with

E(a) = [⟨a, 1⟩].

Which gives us an isomorphic embedding in the sense that the following theorem holds:

Theorem 5QL. E is an injective function from Z into Q satisfying the following conditions:

(a) E(a+ b) = E(a) +Q E(b).

(b) E(ab) = E(a) ·Q E(b).

(c) E(0) = 0Q and E(1) = 1Q.

(d) a < b iff E(a) <Q E(b).

Fact. We also obtain the following relation between fractions and division:

[⟨a, b⟩] = E(a)÷ E(b).

Since b ̸= 0, we have E(b) ̸= 0Q, and so the indicated division is possible.

Note. Henceforth, we will simplify the notation by omitting the subscript “Q” on +Q, ·Q, 0Q, and
so forth. Also, the product r · s will usually be written as just rs.
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0.5.3 Real Numbers

Note. There are many methods to choose from for a successful construction of the real numbers,
each with their own advantages.

Definition. Define a Cauchy sequence to be a function s : ω → Q such that |sm, sn| is arbitrarily
small for sufficiently large n; i.e.,

(∀ positive ε in Q)(∃k ∈ ω)(∀m > k)(∀n > k)|sm − sn| < ε.

Definition. Let C be the se of all Cauchy sequences. For r and s in C, we define r and s to be
equivalent (r ∼ s) iff |rn − sn| is arbitrarily small for all sufficiently large n; i.e.,

(∀ positive ε in Q)(∃k ∈ ω)(∀n > k)|rn − sn| < ε.

Fact. The quotient set C/∼ is a suitable candidate for R. a

aThis approach of constructing R is due to Cantor.

Fact. The Cauchy sequence construction of R has the advantage of generality, since it can be used
with an arbitrary metric space in place of Q.

Definition. A Dedekind cut is a subset x of Q such that:

1. ∅ ̸= x ̸= Q

2. x is closed “downwards”, i.e.,

q ∈ x & r < q =⇒ r ∈ x.

3. x has no largest member.

Definition. We define the real numbers to be the set of all Dedekind cuts.

Fact. The Dedekind cut construction of R has the advantage of simplicity, in that it provides a simple
definition of R and its ordering. But multiplication of Dedekind cuts is awkward and verification of
the properties of multiplication is a tedious business.

Definition. The ordering on R is particularly simple. For x and y in R, define

x <R y iff x ⊂ y.

In other words, <R is the relation of being a proper subset: <R= {⟨x, y⟩ ∈ R× R |x ⊂ y}.

Theorem 5RA. The relation <R is a linear ordering on R.

Self-Proof.

Definition. A real number∗ x is said to be an upper bound of a subset A of R iff y ≤R x for every
y in A.

∗The upper bound x need not belong in A.

Definition. The set A is bounded (i.e. bounded above) iff there exists some upper bound of A.

Definition. A least upper bound of A is a upper bound that is less than any other upper bound.
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Theorem 5RB. Any bounded nonempty subset of R has a least upper bound in R.

Self-Proof.

Definition. For reals x and y, define:

x+R y = {q + r | q ∈ x & r ∈ y}.

Lemma 5RC. For real numbers x and y, the sum x+R y is also in R.

Self-Proof.

Theorem 5RD. Addition of real numbers is associative and commutative:

(xRy) +R z = x+R (y +R z),

x+ R+ y = y +R x.

Definition. The zero element of R is defined to be the set of negative rational numbers:

0R = {r ∈ Q | r < 0}.

Theorem 5RE. (a) 0R is a real number.

(b) For any x in R, we have x+R 0R = x.

Self-Proof.

Definition. Define the inverse of x to be

−x = {r ∈ Q | (∃s > r)− s /∈ x}.

Theorem 5RF. For every x in R:

(a) −x ∈ R,

(b) x+R (−x) = 0R.

Self-Proof.

Fact. ⟨R,+R, 0R⟩ is an Abelian group. As in any Abelian group, the cancellation laws hold.

Corollary 5RG. For any real numbers,

x+R z = y +R z =⇒ x = y.

Theorem 5RH. For any real numbers,

x <R y ⇐⇒ x+R z <R y +R z.

Definition. We define the absolute value |x| of a real number x to be

|x| = x ∪ −x.

We want |x| to be the larger of x and −x, as the larger one is always the nonnegative one. Since our ordering is
inclusion, the larger of the two is just their union. Hence, explaining our definition of |x| above.
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Definition. (a) If x and y are nonnegative real numbers, then

x ·R y = 0R ∪ {rs | 0 ≤ r ∈ x & 0 ≤ s ∈ y}.

(b) If x and y are both negative real numbers, then

x ·R y = |x| ·R |y|.

(c) If one of the real numbers x and y is negative and one is nonnegative, then

x ·R y = −(|x| ·R |y|).

Theorem 5RI. For any real numbers, the following holds:

(a) x ·R y is a real number.

(b) Multiplication is associative, commutative, and distributive over addition.

(c) 0R ̸= 1R and x ·R 1R = x.

(d) For nonzero x there is a nonzero real number y with x ·R y = 1R.

(e) Multiplication by a positive number preserves order: If 0R <R z, then

x <R y ⇐⇒ x ·R z <R y ·R z.

Where we define 1R = {r ∈ Q | r < 1}.

Fact. The foregoing theorems show that, like the rationals, the reals (with +R, ·R, 0R, 1R, and <R)
form an ordered field. But unlike the rationals, the reals have the least-upper-bound property.

Definition. An ordered field is said to be complete iff it has the least-upper-bound property.

Fact. It can be shown that any other complete ordered field is isomorphic to the ordered field of
real numbers.

Definition. The correct embedding function E from Q into R assigns to each rational number r
the corresponding real number

E(r) = {q ∈ Q | q < r},

consisting of all smaller rationals.

Theorem 5RJ. E is an injective function from Q into R satisfying the following conditions:

(a) E(r + s) = E(r) +R E(s).

(b) E(rs) = E(r) ·R E(s).

(c) E(0) = 0R and E(1) = 1R.

(d) r < s iff E(r) <R E(s).
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0.5.4 Summaries

Definitions.

i⟩ Integers Let m, n, p, and q be natural numbers.

[⟨m,n⟩] ∼ [⟨p, q⟩] ⇐⇒ m+ q = p+ n,

[⟨m,n⟩] +Z [⟨p, q⟩] = [⟨m+ p, n+ q⟩],
−[⟨m,n⟩] = [⟨n,m⟩],

[⟨m,n⟩] ·Z [⟨p, q⟩] = [⟨mp+ nq,mp+ np⟩],
[⟨m,n⟩] <Z [⟨p, q⟩] ⇐⇒ m+ q ∈ p+ n,

E(n) = [⟨n, 0⟩].

ii⟩ Rational numbers Let a, b, c, and d be integers with bd ̸= 0.

⟨a, b⟩ ∼ ⟨c, d⟩ ⇐⇒ ad = cb,

[⟨a, b⟩] +Q [⟨c, d⟩] = [⟨ad+ cb, bd⟩],
−[⟨a, b⟩] = [⟨−a, b⟩],

[⟨a, b⟩] ·Q [⟨c, d⟩] = [⟨ac, bd⟩],
[⟨a, b⟩] <Q [⟨c, d⟩] ⇐⇒ ad < cb, when b and d are positive,

E(a) = [⟨a, 1⟩].

iii⟩ Real numbers A real number is a set x such that ∅ ⊂ x ⊂ Q, x is closed downwards, and x
has no largest member.

x <R y ⇐⇒ x ⊂ y,

x+R y = {q + r | q ∈ x & r ∈ y},
−x = {r ∈ Q | (∃s > r)− s /∈ x},
|x| = x ∪ −x,

|x| ·R |y| = 0R ∪ {rs | 0 ≤ r ∈ |x| & 0 ≤ s ∈ |y|},
E(r) = {q ∈ Q | q < r}.

iv⟩ An Abelian group (in additive notation) is a triplea ⟨A,+, 0⟩ consisting of a set A, a binary
operation + on A, and an element (“zero”) of A, such that the following conditions are met:

1. + is associative and commutative.

2. 0 is an identity element, i.e., x+ 0 = x.

3. Inverses exist, i.e., ∀x∃y(x+ y = 0).

An Abelian group (in multiplicative notation) is a triple ⟨A, ·, 0⟩ consisting of a set A, a binary
operation · on A, and an element 1 of A, such that the following conditions are met:

1. · is associative and commutative.

2. 1 is an identity element, i.e., x · 1 = x.

3. Inverses exist, i.e., ∀x∃y(x · y = 1).

This is, of course, the same as the preceding definition.

v⟩ A group has the same definition, except that we do not require that the binary operation be
commutative.

Fact. All the groups that we have considered have, in fact, been Abelian groups. But some of
our results (e.g. the uniqueness of inverses) are correct in any group, Abelian or not.
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vi⟩ A commutative ring with identity is a quintuple ⟨D,+, ·, 0, 1⟩ consisting of a set D, binary
operations + and · on D, and distinguished elements 0 and 1 of D, such that the following
conditions are met:

1. ⟨D,+, 0⟩ is an Abelian group.

2. The operation · is associative, commutative, and distributive over addition.

3. 1 is a multiplicative identity x · 1 = x and 0 ̸= 1.

vii⟩ An integral domain is a commutative ring with identity with the additional property that
there are no zero divisors:

4. If x ̸= 0 and y ̸= 0, then also x · y ̸= 0.

viii⟩ A field is a commutative ring with identity in which multiplicative inverses exists:

4’. If x is a nonzero element of D, then x · y = 1 for some y.

Fact. Any field is also an integral domain, because condition 4’ implies condition 4 (see the
proof to Corollary 5QG).

ix⟩ An ordered field is a sextuple ⟨D,+, ·, 0, 1, <⟩ such that the following conditions are met:

1. ⟨D,+, ·, 0, 1⟩ is a field.

2. < is a linear ordering on D.

3. Order is preserved by addition and multiplication by positive element (i.e. 0 < z):

x < y ⇐⇒ x+ z < y + z.

If 0 < z, then
x < y ⇐⇒ x · z < y · z.

x⟩ We can define ordered integral domain or even ordered commutative ring with identity by
adjusting the first condition.

xi⟩ A complete ordered field is an ordered field in which for every bounded nonempty subset of D
there is a least upper bound.

Note. The constructions in this chapter can be viewed as providing an existence proof for such
fields. The conditions for a complete ordered field are not impossible to meet, for we have
constructed a field meeting them.

aIt is also possible to define a group to be a pair A,+, since the zero element turns out to be uniquely determined.
We have formulated these definitions to match the exposition in this chapter.
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0.6 Cardinal Numbers and the Axiom of Choice

Definition. A set A is equinumerous to a set B (written A ≈ B) iff there is a bijective function
from A into B. A bijection from A into B is called a one-to-one correspondence between A and B.

Fact. For any set A we have PA ≈ A2 Self-Proof.

Theorem 6A. For any sets A, B, and C:

(a) A ≈ A.

(b) If A ≈ B, then B ≈ A.

(c) If A ≈ B and B ≈ C, then A ≈ C.

Self-Proof.

Theorem 6B. (a) The set ω is not equinumerous to the set R of real numbers.

(b) No set is equinumerous to its power set.

Self-Proof.

Fact. R is equinumerous to Pω.

Definition. A set is finite iff it is equinumerous to some natural number. Otherwise, it is infinite.

Pigeonhole Principle No natural number is equinumerous to a proper subset of itself.

Corollary 6C. No finite set is equinumerous to a proper subset of itself. Self-Proof.

Corollary 6D. (a) Any set equinumerous to a proper subset of itself is infinite.

(b) The set ω is infinite.

Self-Proof.

Corollary 6E. Any finite set is equinumerous to a unique natural number. Self-Proof.

Definition. For any set A we will define (in Chapter 7) a set cardA in such a way that:

(a) For any sets A and B,
cardA = cardB iff A ≈ B.

(b) For a finite set A, cardA is the natural number n for which A ≈ n.

Lemma 6F. If C is a proper subset of a natural number n, then C ≈ m for some m less than n.
Self-Proof.

Corollary 6G. Any subset of a finite set is finite. Self-Proof.
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0.7 Random Interesting Stuff

0.7.1 Logic

Definition. Some Common Logical Notations

(∀x ∈ A)P (x) ⇐⇒ ∀x[x ∈ A =⇒ P (x)]

(∃x ∈ A)P (x) ⇐⇒ ∃x[x ∈ A ∧ P (x)]

(∃y ∈ B)(∀x ∈ A)C(x, y) ⇐⇒ ∃y∀x
(
y ∈ B ∧ [x ∈ A =⇒ C(x, y)]

)
⇐⇒ ∃y[y ∈ B ∧ ∀x(x ∈ A =⇒ C(x, y))]

(∀x ∈ A)(∃y ∈ B)C(x, y) ⇐⇒ ∀x∃y
(
x ∈ A =⇒ [y ∈ B ∧ C(x, y)]

)
⇐⇒ ∀x

(
x ∈ A =⇒ [∃y ∧ C(x, y)]

)
”φ ∧ ∀xψ ⊣⊢ ∀x(φ ∧ ψ) whenever x is not free in phi (and similarly for exists and implies though
one direction there requires classical logic)”

Extra Stuff for the Axiom Schema of Specifiation:

The reason why we use an axiom schema instead of ∀φ is that in first order logic (which is where
ZFC resides), quantification over predicates, like φ, is not allowed. Note that while ∀φ and ∃φ is
not allowed in FOL, ∀x(φ(x)) and ∃x(φ(x)) is allowed.

Indeed, the k here represents a natural number and that we can only involve a finite number of
symbols/variables (in our case sets) t1, . . . , tk in our predicate φ, a wff. By definition, a wff is
finite sequence of symbols, which is why we can’t ’involve’ an infinite number of variables in φ.
Now, to make each subset axiom a sentence, we must quantify over al the symbols involved, which
is why we have ∀t1, . . . , tk∀A∃B∀x.

The reason that being a sentence is so important, is that, otherwise, the wff kind of has no
meaning. To be more specific, in any mathematical structure, a sentence is automatically true or
false (E.g.: ∃y∀x(x+ y = x)). On the contrary, something like ∃y(x+ y = x) has no meaning
unless you say what y is: If you have free variables in your formula, you need a variable assignment
function to give the formula a truth value. While for sentences you don’t need to speak of variable
assignment functions. For an axiomatic system, we want to know if any given structure satisfies
those axioms or not. E.g.: In axiomatic set theory, we are defining/constructing sets by saying
what properties they must have. If you are using sentences, then the sets will be well-defined and
you can assert whether or not something is a set. However, with a wff that is not a sentence, you
can’t say if a structure satisfies that axiom/property without a variable assignment.

Enderton’s A Introduction To Mathematical Logic:

Definition. An expression is a finite sequence of symbols.
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Definition. A well-formed formula (or simply formula or wff ) is an expression that can be built up from the
sentence symbols by applying some finite number of times the formula-building operations(on expressions)
defined by the equations

E¬(α) = (¬α)
E∧(α, β) = (a ∧ b)

E∨(α, β) = (a ∨ b)

E→(α, β) = (a → b)

E↔(α, β) = (a ↔ b)

Definition. If no variable occurs free in the wff α (i.e., if h(α) = ∅), then α is a sentence.

Wise words by Enderton: In applications of subset axioms we generally will not write out the formula itself. And this

example shows why; ”a is a one-element subset of s” is much easier to read than the legal formula. But in every case it

will be possible (for a person with unbounded patience) to eliminate the English words and the defined symbols (such as

∅,∪ and so forth) in order to arrive at a legal formula. The procedure for eliminating defined symbols is discussed further

in the Appendix.

Quantifiers in Induction:

Question(s):

Its rather common to see notation for the inductive step like
”Assume that A(n) is true for a n ∈ N.” This seems be translated formally, roughly as

[∃n ∈ P (n)] =⇒ P (n+ 1)

Hmm notice what seems to be a potential issue. The inductive step is supposed to look something
like

(∀n ∈ N)[P (n) =⇒ P (n+ 1)]

For the former, there is a free variable (as it is unquantified). So, would that even make any sense
or be a sentence?

Answers:

1. https://math.stackexchange.com/questions/2935730/
what-quantifier-is-used-when-assuming-pn-for-some-n-in-the-induction-hypothes

2. https://discord.com/channels/268882317391429632/328208536029102081/
1042833046694543520

Basically; the ”for some” here does not actually represent the existential quantifier. It is moreso
meant to represent an arbitrary pick for our choice of n.
By Universal Generalization, we know if ⊢ P (x) has been derived, then ⊢ ∀xP (x) can also be
derived.
We can also look at Enderton’s A Introduction to Mathematical Logic for this statement (Pg 117):

GENERALIZATION THEOREM: If Γ ⊢ φ and x does not occur free in any formula in Γ,
then Γ ⊢ ∀xφ.

Hence, the ‘logic’ is to prove the statement that n ∈ N =⇒ [P (n) =⇒ P (n+ 1)] is true, without
any assumptions on what n is. Then, by Universal Generalization, we know that
∀n
(
n ∈ N =⇒ [P (n) =⇒ P (n+ 1)]

)
is true.

(Also, since the existential quantifier in the latter doesn’t even extend to P(n+1) you are saying if P(n) is true for

one natural number P(n+1) is true for every variable assignment to n i.e. every natural number greater than 0.

While what we want in induction is as mentioned above)
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0.7.2 Certain Enderton Proofs

Enderton’s Proof of Corollary 5QG:

The preceding theorem (Theorem 5QF) provides us h rationals r′ and s′ for which
r ·Q r′ = s ·Q s′ = 1Q. Hence

(r ·Q s) ·Q (r′ ·Q s′) = 1Q

by using commutative and associative laws. But this implies that r ·Q s ̸=Q, because
0Q ·Q (r′ · s′) = 0Q ̸= 1Q. ⊣

Enderton’s Proof of Theorem 5QK:

We can prove this as a corollary of the preceding theorem (Theorem 5QJ), following our past
pattern. But there is now a simpler option open to us. In part (a) we add −t to both sides of the
given equations, and in part (b) we multiply both sides of the given equation by t−1. (This proof
works in any Abelian group.) ⊣
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Exercises

1.1 Axioms and Operations

1.1.1 Axioms and Operations

1.1.2 Arbitrary Unions and Intersections

Qns 6(a) ×

Show that: ⋃
P(A) = A

By the Powerset Axiom, P (A) contains all subsets of A, i.e.

P (A) ⇐⇒ ∀y(y ∈ P (A) ⇐⇒ y ⊆ A)

And by the Union Axiom,
⋃
P (A) contains all elements that can be found in any member of P (A):

∀x
[
x ∈

⋃
P (A) ⇐⇒ (∃y ∈ P (A))x ∈ y

]
Trivially, these same members of P (A) are subsets of A. Thus,

∀x
[
x ∈

⋃
P (A) ⇐⇒ (∃y ⊆ A)x ∈ y

]
By the definition of a subset that:

y ⊆ A ⇐⇒ ∀x(x ∈ A =⇒ x ∈ A)

All elements of
⋃
P (A) must be in A, vice versa as well,

∀x
[
x ∈

⋃
P (A) ⇐⇒ x ∈ A

]
So, by the Extensionality Axiom, since all elements of

⋃
P (A) = A, and vice versa, they must be

equal sets ⋃
P (A) = A

Q.E.D ■

Remarks (Big Check 1, 28/12/22): If that first part (P (A) ⇐⇒ . . .) highlighted in green is
included, then that line is certainly wrong. “vice versa as well” the converse direction is actually
not shown. Of course, the phrasing is not very good since I did this a long time ago when I was
less familiar/accustomed to proofs.

Redo of proof: Assume x ∈
⋃

PA. By definition of the powerset and union, this implies the
existence of some a ⊆ A so x ∈ a. Immediately, we see that x must be in A. Conversely, suppose
x ∈ A. Then, x ∈ A ⊆ A, meaning x ∈ A ∈ PA. And hence, x ∈

⋃
PA. Wherefore, we can now

conclude that
⋃

PA = A.

Q.E.D. ■
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Qns 6(b) ×

Show that:
A ⊆ P

⋃
A

By the Union Axiom,
⋃
A contains all elements that can be found in any member of A:

∀x
(
x ∈

⋃
A ⇐⇒ (∃a ∈ A)x ∈ a

)
Let X ∈ A, then

∀x
(
x ∈ X =⇒ x ∈

⋃
A
)

By the Powerset Axiom, P
⋃
A contains all subsets of

⋃
A, i.e.

∀X
(
X ∈ P

⋃
A ⇐⇒ X ⊆

⋃
A
)

Therefore, since any and all elements of A is also an element of P
⋃
A, A ⊆ P

⋃
A

Q.E.D. ■

A = P
⋃
A only when A = {∅}

Remarks (Big Check 1, 28/12/22): There is conflict between what X represents. I should have
used two distinct symbols there. Honestly, confusing to read. A number of improvements can be
made; such as concluding that X ⊆ A after the second line, writing X ⊆

⋃
A =⇒ X ∈ P

⋃
A in

the third line instead of using the biconditional (which is totally unnecessary), etc.

Redo of proof: Let x ∈ A. Then, for any y ∈ x ∈ A, y ∈
⋃
A immediately follows. Hence, x is

clearly a subset of
⋃
A since all its elements are also in

⋃
A. Consequently, x ∈ P

⋃
A.

Wherefore, as this holds true for any selection of x ∈ A, A ⊆ P
⋃
A.

Q.E.D. ■
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Qns 8 ✓

Show that: There exists no set to which every singleton belongs

Assume there exists a set S containing all singletons. Now, by the Axiom of Pairing: for all sets x,
{x} is also a set. And hence, {x} ∈ S. So, the set⋃

S = {x|{x} ∈ S}

is a set of all sets,
⋃
S. However, this contradicts Theorem 2A. Therefore, there exists no set of

all singletons.

Improved/Edited on 17/11/22

Remarks (Big Check 1, 28/12/22): Ehh seems about right, however, I’m still not satisfied with
the phrasing. So, let’s redo this!

Redo of proof: Assume a set S of all singletons exists. It follows from the Union Axiom that⋃
S = {x | {x} ∈ S} is a set. However,

⋃
S would be a set of all sets, because {x} exists for any

set x by the Axiom of Pairing. This is in clear contradiction with Theorem 2A which asserts that
such a set cannot exist. Wherefore, it must be that a set of all singletons does not exist.

Q.E.D. ■
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✓
Qns 10

Show that:
Given a ∈ b,P(a) ∈ P

(
P
(⋃

B
))

With reference / help of the Appendix

Assume a ∈ B. Let c ∈ P(a), then c ⊆ a. Taking x ∈ c, by the definition of the subset this means
that x ∈ a:

x ∈ c =⇒ x ∈ a

By the Union Axiom x ∈
⋃
B:

a ∈ B ∧ x ∈ a =⇒ x ∈
⋃
B

Since any x ∈ c also means x ∈
⋃
B, c ⊆ B.(

x ∈ c =⇒ x ∈
⋃
B
)

⇐⇒ c ⊆
⋃
B

Therefore, c ∈ P (
⋃
B).

c ⊆ B =⇒ c ∈ P
(⋃

B
)

So, by the definition of the subset, P(a) ∈ P (
⋃
B)[

c ∈ P(a) =⇒ c ∈ P
(⋃

B
)]

⇐⇒ P(a) ⊆ P
(⋃

B
)

Thus, P(a) ∈ P (P (
⋃
B))

Q.E.D. ■

Remarks (Big Check 1, 28/12/22): Again, the general direction the proof points towards is
correct. However, once more, the phrasing has much room for improvement and there are a
number of errors:

1. There should be brackets enclosing the green part.

2. To be more accurate, the universal quantifier should be added in the third line in front of
(x ∈ c =⇒ x ∈

⋃
B).

3. Same thing with the second last line.

4. The capital B should all be replaced with small b.

Redo of proof: Assume a ∈ b and let c ∈ P(a), i.e. c ⊆ a. Then, for any x ∈ c, x ∈ a ∈ b holds
true. Hence, x ∈

⋃
b follows. As a result, c ⊆

⋃
b. In other words, c ∈ P(

⋃
b). Consequently

P(a) ⊆ P(
⋃
b). Wherefore, indeed we see that P(a) ∈ P(P(

⋃
b)).

Q.E.D. ■
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1.1.3 Algebra of Sets

Qns 11 ✓

Show that for any sets A and B,

A = (A ∩B) ∪ (A\B) and A ∪ (B\A) = A ∪B

Proof:

x ∈ (A ∩B) ∪ (A\B) ⇐⇒ (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x /∈ B)

⇐⇒ x ∈ A ∧ (x ∈ B ∨ x /∈ B)

⇐⇒ x ∈ A

Thus, since x ∈ (a ∩B) ∪ (A\B) iff x ∈ A, (A ∩B) ∪ (A\B) = A

x ∈ A ∪ (B\A) ⇐⇒ x ∈ A ∨ (x ∈ B ∧ x /∈ A)

⇐⇒ (x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ x /∈ A)

⇐⇒ x ∈ A ∨ x ∈ B

⇐⇒ x ∈ A ∪B

So, since x ∈ A ∪ (B\A) iff x ∈ (A ∪B), A ∪ (B\A) = A ∪B

Q.E.D. ■

Remarks (Big Check 1, 28/12/22): Seems ok.

Qns 12 ✓

Verify the following identity (one of De Morgan’s Laws):

C\(A ∩B) = (C\A) ∪ (C\B)

Proof:

x ∈ C\(A ∩B) ⇐⇒ x ∈ c ∧ (x /∈ A ∨ x /∈ B)

⇐⇒ (x ∈ C ∧ x /∈ A) ∨ (x ∈ C ∧ x /∈ B)

⇐⇒ x ∈ (C\A) ∨ x ∈ (C\B)

⇐⇒ x ∈ (C\A) ∪ (C\B)

Therefore, C\(A ∩B) = (C\A) ∪ (C\B)

Q.E.D. ■

Remarks (Big Check 1, 28/12/22): Seems fine too.
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Qns 13 ✓

Show that if B ⊆ A, then C\B ⊆ C\A

Proof:

Let there be 2 sets A and B such that A ⊆ B;

x ∈ (C\B) ⇐⇒ x ∈ C ∧ x /∈ B

=⇒ x ∈ C ∧ x /∈ A, since x /∈ B =⇒ x /∈ A

=⇒ x ∈ C\A

Thus, it follows that C\B ⊆ C\A

Q.E.D. ■

Qns 15
A+B := (A\B) ∪ (B\A)

(a) ✓ Show that A ∩ (B + C) = (A ∩B) + (A ∩ C)
(b) Show that A+ (B + C) = (A+B) + C

Proof:

(a) By definition;

x ∈ (A ∩B) + (A ∩ C) ⇐⇒ x ∈ [(A ∩B)\(A ∩ C)] ∪ [(A ∩ C)\(A ∩B)]

⇐⇒ [(x ∈ A ∧ x ∈ B) ∧ (x /∈ A ∨ x /∈ C)]

∨ [(x ∈ A ∧ x ∈ C) ∧ (x /∈ A ∨ x /∈ B)]

Since x /∈ A would mean that (x ∈ A ∧ x ∈ B) and (x ∈ A ∧ x ∈ C) are both false, therefore it
means x /∈ (A ∩B) + (A ∩ C). Thus, x ∈ A in order for x ∈ (A ∩B) + (A ∩ C):

x ∈ (A ∩B) + (A ∩ C) ⇐⇒ [(x ∈ A ∧ x ∈ B) ∧ x /∈ C]

∨ [(x ∈ A ∧ x ∈ C) ∧ x /∈ B]

⇐⇒ x ∈ [A ∩ (B\C)] ∪ [A ∩ (C\B)]

⇐⇒ x ∈ A ∩ (B + C)

So, A ∩ (B + C) = (A ∩B) + (A ∩ C)

Q.E.D. ■
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(b)

x ∈ A+ (B + C) ⇐⇒ x ∈ A+ [(B\C) ∪ (C\B)]

⇐⇒ x ∈ (A\[(B\C) ∪ (C\B)]) ∪ ([(B\C) ∪ (C\B)]\A)

x ∈ (A+B) + C ⇐⇒ x ∈ [(A\B) ∪ (B\A)] + C

⇐⇒ x ∈ ([(A\B) ∪ (B\A)]\C) ∪ (C\[(A\B) ∪ (B\A)])

And observe that:

x ∈ (B\C) ∪ (C\B) ⇐⇒ (x ∈ B ∧ x /∈ C) ∨ (x ∈ C ∧ x /∈ B)

x /∈ (B\C) ∪ (C\B) ⇐⇒ ¬[(x ∈ B ∧ x /∈ C) ∨ (x ∈ C ∧ x /∈ B)]

⇐⇒ (x /∈ B ∨ x ∈ C) ∧ (x /∈ C ∧ x ∈ B)

⇐⇒ (x ∈ B ∧ x ∈ C) ∨ (x /∈ B ∧ x ∈ C)

Applying this onto our previous expansions of A+ (B + C) and (A+B) + C ;

x ∈ A+ (B + C) ⇐⇒ (x ∈ A ∧ [(x ∈ B ∧ x ∈ C) ∨ (x /∈ B ∧ x ∈ C)])

∨ ([(x ∈ B ∧ x /∈ C) ∨ (x ∈ C ∧ x /∈ B)] ∧ x /∈ A)

⇐⇒ (x ∈ A ∧ x ∈ B ∧ x ∈ C) ∨ (x ∈ A ∧ x /∈ B ∧ x /∈ C)

∨ [(x ∈ B ∧ x /∈ C) ∧ x /∈ A] ∨ [(x ∈ C ∧ x /∈ B) ∧ x /∈ A]

⇐⇒ (x ∈ A ∧ x ∈ B ∧ x ∈ C) ∨ (x ∈ A ∧ x /∈ B ∧ x /∈ C)

∨ (x ∈ B ∧ x /∈ C ∧ x /∈ A) ∨ (x ∈ C ∧ x /∈ B ∧ x /∈ A)

x ∈ (A+B) + C ⇐⇒ x ∈ ([(x ∈ A ∧ x /∈ B) ∨ (x ∈ B ∧ x /∈ A)] ∧ x /∈ C)

∨ (x ∈ C ∨ [(x ∈ A ∨ x ∈ B) ∧ (x /∈ B ∨ x /∈ A)])

⇐⇒ ([(x ∈ A ∧ x /∈ B) ∧ x /∈ C] ∨ [(x ∈ B ∧ x /∈ A) ∧ x /∈ C])

∨ (x ∈ C ∧ x ∈ B ∧ x ∈ A) ∨ (x ∈ C ∧ x /∈ B ∧ x /∈ C)

⇐⇒ (x ∈ A ∧ x /∈ B ∧ x /∈ C) ∨ (x ∈ B ∧ x /∈ A ∧ x /∈ C)

∨ (x ∈ C ∧ x ∈ B ∧ x ∈ A) ∨ (x ∈ C ∧ x /∈ A ∧ x /∈ B)

So, A+ (B + C) = (A+B) + C

Q.E.D. ■

Remarks (Big Check 1, 28/12/22): Yeah nope I’m not checking this. Proving this by a truth table
(considering the cases of x ∈ A, x /∈ A, etc) would be much easier and readable, but last time I
wanted to mess around a lil lol.
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Qns 19

Is P(A\B) always equal to P(A)\P(B)? Is it ever equal to P(A)\P(B)?

1. ✓ Let’s look at a simple counterexample; Let A = {1, 2, 3} and B = {3},

P(A\B) = P({1, 2}) = {∅, {1}, {2}, {1, 2}}

P(A)\P(B) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} \ {∅, {3}}
= {{1}, {2}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Thus, P(A\B) is not always equal to P(A)\P(B). Also, notice that for all powersets, they
contain ∅. Therefore, P(A\B) always contains the ∅ while P(A)\P(B) never contains ∅,
meaning that the P(A\B) ̸= P(A)\P(B) for all sets A and B. Remarks (Big Check 1,

28/12/22): Not bad, the phrasing has improved compared to previous parts. Still has room for
improvement though, of course.

2. × Score: Wtf Let’s look at another way of showing this:

Let X ∈ P(A\B), then X ⊆ A\B, and x ∈ X ⇐⇒ x ∈ A ∧ x /∈ B

Also, let Y ∈ P(A)\P(B), meaning that Y ∈ P(A) ∧ Y /∈ P(B). So,
y ∈ Y =⇒ y ∈ A ⇐⇒ y ∈ A ∧ (y ∈ B ∨ y /∈ B)

Therefore, P(A\B) ̸≡ P(A)\P(B) since their elements are not necessarily the same; it can be
the case that y ∈ A ∧ y ∈ B while it is always the case that x ∈ A ∧ x /∈ B.

P(A\B) = P(A)\P(B) iff ∀X,Y [X ∈ P(A\B) ∨ Y ∈ P(A)\P(B)]

∀z(z ∈ X ∨ z ∈ Y )(z ∈ A ∧ z /∈ B)

Thus, for P(A\B) there must be no z ∈ A ∧ z ∈ B. For ∅ ∈ P(A\B), which is always the case,
is it (vacuously) true that all the non-existent members of ∅ are in A and in B. So, it is never the
case that P(A\B) = P(A)\P(B).

Remarks (Big Check 1, 28/12/22): The presentation is rather terrible, the unnecessary symbols
obscure the key points and makes it significantly challenging to the reader to understand. The
errors are stated below:

1. First line: brackets around x ∈ A∧ x /∈ B (however, again, English words are superior in this context)

2. Second line: brackets again. And in addition, the use of the conditional and biconditional on
a single line is rather confusing to read.

3. Second and Third line: Yeah idk wtf I was writing anymore. . .
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Qns 21 ×

Show that
⋃
(A ∪B) =

⋃
A ∪

⋃
B.

Let X ∈ A and Y ∈ B, x ∈ X and y ∈ Y ,

(X ∈ A)x ∈ X =⇒ x ∈
⋃
A

(Y ∈ B)y ∈ Y =⇒ y ∈
⋃
B

Therefore,

x, y ∈
⋃
A ∪

⋃
B

Observe that:
X,Y ∈ A ∪B

Thus,

x, y ∈
⋃

(A ∪B)

So, since for any elements of the members of A and B, they are in both
⋃
A ∪

⋃
B and

⋃
(A ∪B),

by the Extensionality Axiom, they are equal sets and
⋃
A ∪

⋃
B =

⋃
(A ∪B)

Q.E.D. ■

Remarks (Big Check 1, 28/12/22): Wtf is that notation on the first (mathmode) line;
(X ∈ A)x ∈ X and (Y ∈ B)y ∈ Y ? That’s only used when we have a quantifier. In this case the
proper notation would be x ∈ X ∈ A and y ∈ Y ∈ B. Again, the phrasing and presentation is
quite terrible, making the proof difficult to read and understand. The starting assumption is also
kinda strange, why not just start with assuming x ∈

⋃
(A ∪B), then later the converse?

Qns 22 ×

Show that for if A and B are nonempty sets,
⋂
(A ∪B) =

⋂
A ∩

⋂
B.

Assume A and B to be nonempty sets. Let X ∈ A, Y ∈ B, and x ∈ X, y ∈ Y ,

X,Y ∈ A ∪B

∀X,Y (z ∈ X ∧ z ∈ Y ) ⇐⇒ z ∈
⋂

(A ∪B)

Also, observe that:

∀X(x ∈ X) ⇐⇒ x ∈
⋂
A

∀Y (y ∈ Y ) ⇐⇒ y ∈
⋂
B

Thus,

∀X,Y (z ∈ X ∧ z ∈ Y ) ⇐⇒ z ∈
⋂
A ∩

⋂
B

So, since for any arbitrary z, as long as ∀X,Y (z ∈ X ∧ z ∈ Y ), then z ∈
⋂
(A ∪B) and

z ∈
⋂
A ∩

⋂
, therefore by the Extensionality Axiom,

⋂
(A ∪B) =

⋂
A ∩

⋂
B. As long as A and B

are nonempty sets.

Q.E.D. ■

Remarks (Big Check 1, 28/12/22): Much of the same issue as my past answer to Qns 21. I get the
gist is the line of reasoning I was going for but still terrible, if im being honest.
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Qns 23 ×

Show that if B is nonempty, then A ∪
⋂
B =

⋂
{A ∪X|X ∈ B}.

Assume B is a nonempty set. Let Y ∈ A and X ∈ B, y ∈ Y and x ∈ X,

∀X(x ∈ X) ⇐⇒ x ∈
⋂
B

z ∈ A ∨ ∀X(z ∈ X) ⇐⇒ z ∈ A ∪
⋂
B

Also, notice that
z ∈ A ∨ z ∈ X ⇐⇒ z ∈ A ∪X

Thus,

z ∈ A ∨ ∀X(z ∈ X) ⇐⇒ z ∈
⋂

{A ∪X|X ∈ B}

So, since for any z, z ∈ A ∨ ∀X(z ∈ X) means that z is an element of both A ∪
⋂
B and⋂

{A ∪X|X ∈ B}, by the Extensionality Axiom, A ∪
⋂
B =

⋂
{A ∪X|X ∈ B}

Q.E.D. ■

Remarks (Big Check 1, 28/12/22): Again, I get what I was trying to bring across. However, the
issue again lies in the frankly terrible presentation of it.

Qns 24

(a) ✓ Show that if A is nonempty, then P
⋂
A =

⋂
{P(X)|X ∈ A}

(b) Show that
⋃
{P(X)|X ∈ A} ⊆ P

⋃
A

(a)

Let X ∈ A, x ∈ X, y ∈ P
⋂
A, notice that:

x ∈
⋂
A ⇐⇒ ∀X(x ∈ X)

y ∈ P
⋂
A ⇐⇒ y ⊆

⋂
A

⇐⇒ ∀x(x ∈ y =⇒ x ∈
⋂
A)

⇐⇒ ∀x,X(x ∈ y =⇒ x ∈ X)

Thus,

∀x,X(x ∈ y =⇒ x ∈ X) ⇐⇒ ∀X(y ⊆ X)

⇐⇒ ∀X(y ∈ P(X))

⇐⇒ y ∈
⋂

{P(X)|X ∈ A}

So, since for any y, y ∈ P
⋂
A ⇐⇒ y ∈

⋂
{P(X)|X ∈ A}, P

⋂
A =

⋂
{P(X)|X ∈ A}

Q.E.D. ■

Remarks (Big Check 1, 28/12/22): Well, its more readable than some of the previous ones but the
presentation is still clunky at best. Also, in the first line, there’s no need to state the definition of
the Union Axiom.
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(b) ×

Let x ∈ X,X ∈ A and y ∈
⋃
{P(X)|X ∈ A},

Then,

y ∈
⋃

{P(X)|X ∈ A} ⇐⇒ y ∈ P(X)

⇐⇒ y ⊆ X

⇐⇒ x ∈ y =⇒ x ∈ X

Using the fact that

x ∈
⋃
A ⇐⇒ (X ∈ A)x ∈ X

⇐⇒ x ∈ X

It follows that:

y ∈
⋃

{P(X)|X ∈ A} ⇐⇒ x ∈ y =⇒ x ∈
⋃
A

=⇒ y ⊆ P
⋃
A

So, since y ∈
⋃
{P(X)|X ∈ A} =⇒ y ∈ P

⋃
A, by the definition of the subset,⋃

{P(X)|X ∈ A} ⊆ y ∈ P
⋃
A.

Q.E.D. ■

Remarks (Big Check 1, 28/12/22): Same issues again with presentation and stuff. We’re missing
the existential quantifiers and brackets. Also, in the last mathmode line, I’m pretty sure I meant
to write y ∈ P

⋃
A instead of y ⊆ P

⋃
A.

Qns 25 ✓

Is A ∪
⋃
B always the same as

⋃
{A ∪X|X ∈ B}? If not, then under what conditions does the

equality hold?

Let z ∈ A ∪
⋃
B and X ∈ B,

Then,

z ∈ A ∪
⋃
B ⇐⇒ z ∈ A ∨ z ∈

⋃
B

⇐⇒ z ∈ A ∨ z ∈ X

⇐⇒ z ∈ A ∪X

⇐⇒ z ∈
⋃

{A ∪X|X ∈ B}

Thus, since for any z, z ∈ A ∪
⋃
B ⇐⇒ z ∈

⋃
{A ∪X|X ∈ B}, by the Extensionality Axiom,

A ∪
⋃
B is always the same as z ∈

⋃
{A ∪X|X ∈ B}.

Q.E.D. ■

Remarks (Big Check 1, 28/12/22): Aside from the missing brackets and (two) existential
quantifiers, the proof’s general outline seems fine. But there’s no need to say that “By the
Extensionality Axiom. . . ”
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1.1.4 Epilogue

Qns 31

Let B be the set {{1, 2}, {2, 3}, {1, 3}, {∅}}
(a)

⋃
B

(b)
⋂
B

(c)
⋂⋃

B
(d)

⋃⋂
B

(a) ✓
⋃
B = {∅, 1, 2, 3}

(b) ✓
⋂
B = ∅

(c) ✓
⋂⋃

B = ∅
(d) ✓

⋃⋂
B = ∅

Qns 32

Let S be the set {{a}, {a, b}}. Evaluate and simplify:
(a)

⋃⋃
S

(b)
⋂⋂

S
(c)
⋂⋃

S ∪ (
⋃⋃

S\
⋃⋂

S)

(a) ✓
⋃⋃

S =
⋃
{a, b} = a ∪ b

(b) ✓
⋂⋂

S =
⋂
{a} = a

(c) ✓
⋂⋃

S ∪ (
⋃⋃

S\
⋃⋂

S) = (a ∩B) ∪ [(a ∪ b)\a] = (a ∩ b) ∪ (b\a) = b

Qns 33 ✓

With S as in the preceding exercise, evaluate
⋃

(
⋃
S\
⋂
S) with when a ̸= b and when a = b

⋃(⋃
S\
⋂
S
)
=
⋃

({a, b}\{a}) =
⋃

{b} = b

Therefore, when a ̸= b,
⋃
(
⋃
S\
⋂
S) =

⋃
{b} = b, and when a = b,

⋃
(
⋃
S\
⋂
S) = ∅

Remarks (Big Check 1, 28/12/22): In order to claim
⋃
({a, b}\{a}) =

⋃
{b}, we are using the

assumption that a ̸= b. So it would have been good if that was explicitly stated. But yeah the
final answers should be correct.
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Qns 34 ✓

Show that {∅, {∅}} ∈ PPPP(S) for every set S

Since all non-existent elements of ∅ are in any and all sets, it is true that ∅ is a subset of all sets.
Thus, for any set S,

∅ ∈ PP(S)

∅ ∈ PPP(S) ∧ {∅} ∈ PPP(S)

Meaning that PPP(S) = {∅, {∅}, · · · } . Therefore, {∅, {∅}} is a subset of PPP(S):

{∅, {∅}} ∈ PPPP(S)

So, {∅, {∅}} ∈ PPPP(S) for every set S.

Q.E.D. ■

Remarks (Big Check 1, 28/12/22): The first sentence is unnecessary as ∅ begin a subset of any
set is trivial enough. Again, use English words over symbols like ∧. But the phrasing here isn’t as
horrendous as some previous questions. And it seems fine in general, albeit with a lot of room for
improvement.

Qns 37 ✓

Show that for the following sets the equations hold:
(a) (A ∪B)\C = (A\C) ∪ (B\C)
(b) A\(B\C) = (A\B) ∪ (A ∩ C)
(c) (A\B)\C = A\(B ∪ C)

(a) ✓

t ∈ (A ∪B)\C ⇐⇒ t /∈ C ∧ (t ∈ A ∨ t ∈ B)

⇐⇒ (t ∈ A ∧ t /∈ C) ∨ (t ∈ B ∧ t /∈ C)

⇐⇒ t ∈ (A\C) ∪ (B\C)

Therefore, (A ∪B)\C = (A\C) ∪ (B\C)

(b) ✓

t ∈ A\(B\C) ⇐⇒ t ∈ A ∧ t /∈ (B\C)
⇐⇒ t ∈ A ∧ (t /∈ B ∨ t ∈ C)

⇐⇒ (t ∈ A ∧ t /∈ B) ∨ (t ∈ A ∧ t ∈ C)

⇐⇒ t ∈ (A\B) ∪ (A ∩ C)

Therefore, A\(B\C) = (A\B) ∪ (A ∩ C)
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(c) ✓

t ∈ (A\B)\C ⇐⇒ (t ∈ A ∧ t /∈ B) ∧ t /∈ C

⇐⇒ t ∈ A ∧ (t /∈ B ∧ t /∈ C)

⇐⇒ t ∈ A\(B ∪ C)

Therefore, (A\B)\C = A\(B ∪ C)

Remarks (Big Check 1, 28/12/22): Would have been good to add the necessary brackets, even
though it should be clear what is meant. Not really a big issue here tho.

Qns 38 ✓

Prove that the following are valid:
(a) A ⊆ C ∧B ⊆ C ⇐⇒ A ∪B ⊆ C
(b) C ⊆ A ∧ C ⊆ B ⇐⇒ C ⊆ A ∩B

(a) ✓

A ∪B ⊆ C ⇐⇒ (t ∈ A ∨ t ∈ B) =⇒ t ∈ C

⇐⇒ (t ∈ A =⇒ t ∈ C) ∧ (t ∈ B =⇒ t ∈ B)

⇐⇒ A ⊆ C ∧B ⊆ C

So, A ⊆ C ∧B ⊆ C ⇐⇒ A ∪B ⊆ C.

Remarks (Big Check 1, 28/12/22): We should have added for all t with some additional brackets.
The transition from the first to second step should have shown some intermediary steps to be
clearer as well. But overall, the gist is fine.

(b) ✓

C ⊆ A ∧ C ⊆ B ⇐⇒ (t ∈ C =⇒ t ∈ A) ∧ (t ∈ C =⇒ t ∈ B)

⇐⇒ t ∈ C =⇒ (t ∈ A ∧ t ∈ B)

⇐⇒ C ⊆ (A ∩B)

So, C ⊆ A ∧ C ⊆ B ⇐⇒ C ⊆ A ∩B.

Remarks (Big Check 1, 28/12/22): Same thing here as in part (a).
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1.2 Relations and Functions

1.2.1 Ordered Pairs

1. ✓ Suppose that we attempted to generalise the Kuratowski definitions of ordered pairs to
ordered triples by defining

⟨x, y, z⟩ * = {{x}, {x, y}, {x, y, z}}

Show that this definition is unsuccessful by giving examples of objects u, v, w, x, y, z with

⟨x, y, z⟩ * = ⟨u, v, w⟩ *

but with either y ̸= v or z ̸= w (or both).

Answer:

Example:

⟨1, 2, 1⟩ = {{1}, {1, 2}, {1, 2, 1}}
= {{1}, {1, 2}, {1, 2}}

⟨1, 2, 2⟩ = {{1}, {1, 2}, {1, 2, 2}}
= {{1}, {1, 2}, {1, 2}}

Therefore, ⟨1, 2, 1⟩ = ⟨1, 2, 2⟩ by this definition. Through this definition, as long as w = y ∨ w = z,
then ⟨x, y, z⟩ = ⟨u, v, w⟩. This is not what we want from the definition of an ordered triple, as we
want an ordered triple in the form ⟨x, y, z⟩ = ⟨u, v, w⟩ iff x = u ∧ y = v ∧ z = w.

Remarks (Big Check 1, 28/12/22): Would have been good to say something like “in spite of the
fact that 1 ̸= 2 in the third coordinate.” after “Therefore, . . . by this definition”. Still, a valid
counterexample!

3. ✓ Show that
A×

⋃
B =

⋃
{A×X|X ∈ B}

Proof:

⟨x, y⟩ ∈ A×
⋃
B ⇐⇒ x ∈ A ∧ y ∈

⋃
B

⇐⇒ ∃X ∈ B (x ∈ A ∧ y ∈ X)

⇐⇒ ∃X ∈ B (⟨x, y⟩ ∈ A×X)

⇐⇒ ⟨x, y⟩ ∈
⋃

{A×X|X ∈ B}

Q.E.D. ■

Remarks (Big Check 1, 28/12/22): Yeah seems fine, its just that I would prefer an additional
bracket in the first line.
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4. ✓ Show that there is no set to which every ordered pair belongs.

Suppose that there exists a set S to which every ordered pair belongs. Now, by the Union Axiom
we have

x ∈
⋃⋃

S ⇐⇒ ∃s∃γ(s ∈ S ∧ γ ∈ s ∧ x ∈ γ)

⇐⇒ ∃y∃z[{{y}, {y, z}} ∈ S ∧ (x ∈ {y} ∨ x ∈ {y, z})]
⇐⇒ ∃y∃z[{{y}, {y, z}} ∈ S ∧ (x = y ∨ x = z)]

By the Axiom of Pairing, given any sets y, z, there exists the sets {y}, {z}, {y, z}. So, this means
that the existence of such a set S containing all ordered pairs means that there also exist a set⋃⋃

S containing all sets. However, this contradicts Theorem 2A (Russel’s Paradox) that there
must not be any set of all sets. Thence, there does not exist a set S to which every ordered pair
belongs. :D

Remarks (Big Check 1, 28/12/22): Yeah the general idea is there. But the presentation could
again be better. Like, there’s no reason to use x ∈

⋃⋃
S instead of ⟨x, y⟩ ∈

⋃⋃
S. Also, the

∃s∃γ(s ∈ S ∧ γ ∈ s ∧ x ∈ γ) part is unnecessary. Hence, let us do a redo of the above proof.

Redo of proof (2 proofs):

1. Assume that there exists such a set S of all ordered pairs. Now, we construct the subset
S′ = {⟨x, x⟩ | ⟨x, x⟩ ∈ S}. Notice that every ⟨x, x⟩ can be simplified to {{x}}, by definition.
Therefore, S′ is the set of all such {{x}}. By the Axiom of Pairing, the set {{x}} exists iff
{x} does. Whence, we can conclude that

⋃
S′ is the set of all singletons. However, this is in

clear contradiction to exercise 4 of chapter 2. Wherefore, it must be that no set of all
ordered pairs exists.

2. Suppose there exists such a set S of all ordered pairs. Then,
⋃
S is a set containing all {x}

and {x, y}, because by the Axiom of Pairing, ⟨x, y⟩ exists iff {x} and {x, y} do. We repeat
this procedure once more;

⋃⋃
S is our set of all sets, as by the Axiom of Pairing once more,

{x} and {x, y} exists iff the sets x and y (that belong in
⋃⋃

S) do. However, this now
contradicts Theorem 2A which states the nonexistence of a set of all sets. Wherefore, it
must be that no such set of all ordered pairs exist.

Q.E.D. ■
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5. ✓

(a) ✓ Assume A and B are given sets, and show that there exists a set C such that for any y,

y ∈ C ⇐⇒ y = {x} ×B for some x in A

In other words, show that {{x} ×B|x ∈ A} is a set.

(b) ✓ With A,B, and C as above, show that A×B =
⋃
C

(a)

Let A and B be sets.

By Corollary 3C, A×B = {⟨x, y⟩ |x ∈ A ∧ y ∈ B} is a set.

By the Powerset Axiom, P(A×B) is also a set.

For any given x ∈ A, {x} ⊆ A by a subset axiom. This is just one possible selection of x out of
possibly many in A; thus {x} ×B ⊆ A×B is also a set by another subset axiom.

r ∈ {x} ×B ⇐⇒ r = ⟨x, y⟩ ∧ x ∈ A ∧ y ∈ B

=⇒ r ∈ A×B

So, by a subset axiom on P(A×B), C = {{x} ×B|x ∈ A} is a set too.

Q.E.D. ■

Remarks (Big Check 1, 28/12/22): Rather than the mathmode part with symbols, nowadays I
would probably prefer to write that in words. Also, after that part it would be nice to first
explicitly state that {x} ×B is a subset of A×B, followed by the final conclusion. Otherwise,
yeah looks ok to me.

(b)

y ∈
⋃
C ⇐⇒ y ∈

⋃
{{x} ×B|x ∈ A}

⇐⇒ (∃x ∈ A)y ∈ {x} ×B

⇐⇒ y ∈ A×B

Q.E.D. ■

Remarks (Big Check 1, 28/12/22): Again, would prefer words. But seems fine.

47



1.2.2 Relations

6. × Show that a set A is a relation iff A ⊆ dom A× ran A

Assume set A is a relation. We can expand dom A× ran A to help us:

dom A× ran A = {⟨x, y⟩ |x ∈ dom A ∧ y ∈ ran A}
= {⟨x, y⟩ |x ∈ {x|∃z1(xAz1)} ∧ y ∈ {y|∃z2(z2Ay)}}
= {⟨x, y⟩ |∃z1∃z2(xAz1 ∧ z2Ay2)}

Thus,

⟨x, y⟩ ∈ A ⇐⇒ xAy

=⇒ ⟨x, y⟩ ∈ {⟨x, y⟩ |∃z1∃z2(xAz1 ∧ z2Ay2)}
(In this case, x = z2 ∧ y = z1)

=⇒ ⟨x, y⟩ ∈ dom A× ran A

So, A being a relation implies A ⊆ dom A× ran A.

The converse holds true rather simply; Suppose dom A and ran A are some sets, such that there
is a set A ⊆ dom A× ran A

dom A× ran A = {⟨x, y⟩ |x ∈ dom A ∧ y ∈ ran A}

A ⊆ domA× ranA ⇐⇒ [η ∈ A ⇐⇒ (η ∈ dom A× ran A ∧ φ)]

for some predicate φ.

Thus, A is obviously a set of ordered pairs and hence a relation.

Thence, a set A is a relation iff A ⊆ dom A× ran A.

Remarks (Big Check 1, 28/12/22): Seems a bit of a mess tbh, presentation leaves much to be
desired. Hence, we shall now do a redo of the above question.

Redo of proof:

Assume that the set A is a relation and ⟨x, y⟩ is some element of A. Clearly, x ∈ domA and
y ∈ ranA since xAy. Consequently, ⟨x, y⟩ is in domA× ranA. Which also means
A ⊆ domA× ranA. Conversely, suppose A ⊆ domA× ranA. Since the Cartesian product
domA× ranA only contains ordered pairs by definition, the set A must also only have ordered
pairs in it. Therefore, A is a relation. Wherefore, the set A is a relation iff A ⊆ domA× ranA.

Q.E.D. ■
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8. ✓ Show that for any set A :

dom
⋃

A =
⋃

{dom R|R ∈ A }

ran
⋃

A =
⋃

{ran R|R ∈ A }

We can simplify dom
⋃

A and
⋃
{dom R|R ∈ A } into their respective logical expressions first:

x ∈
⋃

{dom R|R ∈ A } ⇐⇒ ∃R(R ∈ A ∧ x ∈ dom R)

⇐⇒ ∃R[R ∈ A ∧ ∃t(⟨x, t⟩ ∈ R)]

⇐⇒ ∃R∃t(R ∈ A ∧ ⟨x, t⟩ ∈ R)

x ∈ dom
⋃

A ⇐⇒ ∃t
(
⟨x, t⟩ ∈

⋃
A
)

⇐⇒ ∃R∃t(R ∈ A ∧ ⟨x, t⟩ ∈ R)

Now it is simple to see that

x ∈ dom
⋃

A ⇐⇒ x ∈
⋃

{dom R|R ∈ A }

So, obviously, by the Axiom of Extensionality, dom
⋃

A =
⋃
{dom R|R ∈ A }.

The case of ran
⋃

A =
⋃
{ran R|R ∈ A } is basically the same procedure, so I won’t redo it again.

Remarks (Big Check 1, 28/12/22): Rather than writing two chains of biconditionals and then
doing a conclusion, it is simpler to just write it down in one chain, i.e.:

x ∈
⋃

{dom R|R ∈ A } ⇐⇒ ∃R(R ∈ A ∧ x ∈ dom R)

⇐⇒ ∃R[R ∈ A ∧ ∃t(⟨x, t⟩ ∈ R)]

⇐⇒ ∃R∃t(R ∈ A ∧ ⟨x, t⟩ ∈ R)

⇐⇒ ∃t
(
⟨x, t⟩ ∈

⋃
A
)

⇐⇒ x ∈ dom
⋃

A

Which affected the coherency of the above proof.
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1.2.3 n-ary relations

10. ✓ Show that an ordered 4-tuple is also an ordered m-tuple for every positive integer m less
than 4.

Proof:
⟨α, β, γ, ζ⟩ = ⟨⟨α, β, γ, ζ⟩⟩

This shows that a 4-tuple is also a 1-tuple.

⟨α, β, γ, ζ⟩ = ⟨⟨α, β, γ⟩ , ζ⟩

This shows that a 4-tuple is also a 2-tuple.

⟨α, β, γ, ζ⟩ = ⟨⟨⟨α, β⟩ , γ⟩ , ζ⟩ = ⟨⟨α, β⟩ , γ, ζ⟩

This shows that a 4-tuple is also a 3-tuple

Thence, a 4-tuple is a m-tuple for every positive integer m less than 4.

50



1.2.4 Functions

11. × Prove the following version (for functions) of the extensionality principle: Assume that F
and G are functions, domF = domG, and F (x) = G(x) for all x in the common domain. Then
F = G.

dom F = dom G and F (x) = G(x) for all x in the common domain means that:

∀x(x ∈ dom F ∧ x ∈ dom G =⇒ F (x) = G(x))

⇐⇒ ∀x[x ∈ dom F ∧ x ∈ dom G =⇒ ∃y(xFy ⇐⇒ xGy)]

⇐⇒ ∀x[x ∈ dom F ∨ x ∈ dom G =⇒ ∃y(xFy ⇐⇒ xGy)], since dom F = dom G

⇐⇒ F = G

Thence, our proof is complete since we have shown F = G.

Remarks (Big Check 1, 28/12/22): Unnecessary use of symbols which make the proof very hard to
read, and neither clear nor concise. Resultantly, we will redo this:

Redo of proof:

Assume that F and G are functions so that domF = domG and F (x) = G(x) for all x in their
common domain. Consequently, we see that
F = {⟨x, y⟩ |x ∈ domF & y = F (x)} = {⟨x, y⟩ |x ∈ ranG & y = G(x)} = G. Wherefore, we
conclude that F = G.

Q.E.D. ■

14. Assume that f and g are functions.

(a) × Show that f ∩ g is a function.

(b) Show that f ∪ g is a function iff f(x) = g(x) for every x in (dom f) ∩ (dom g).

(a) Let f, g be functions,

z ∈ f ∩ g ⇐⇒ (z ∈ f ∧ z ∈ g) ⇐⇒ ∃x∃y(z = ⟨x, y⟩ ∧ xfy ∧ xgy)

So, f ∩ g certainly contains tuples (only). Assume that f ∩ g is not a function, i.e. f ∩ g is
not single-valued. Now;

∃x∃y1∃y2[(⟨x, y1⟩ ∈ f ∩ g) ∧ (⟨x, y2⟩ ∈ f ∩ g)]
⇐⇒ ∃x∃y1∃y2[(⟨x, y1⟩ ∈ f) ∧ (⟨x, y2⟩ ∈ f) ∧ (⟨x, y1⟩ ∈ g) ∧ (⟨x, y2⟩ ∈ g)]

However, we initially let f, g be functions, and it is shown that our assumption that f ∩ g is
not a function (more precisely, that f ∩ g is not single-valued) leads to a contradictory
conclusion that f, g are not functions. So, by contradiction, f ∩ g must be (single-valued,
and) a function (since we shown it contains tuples only and f ∩ g is indeed single-valued).

Remarks (Big Check 1, 28/12/22): Yeah this seems like quite an unnecessarily convoluted
mess. Let’s redo this.

Redo of proof:

Assume that f and g are functions. Clearly, f ∩ g must contain only ordered pairs, hence, it
is a relation. Now, we need to check for single-valuedness. Suppose that ⟨x, y1⟩ ∈ f ∩ g and
⟨x, y2⟩ ∈ f ∩ g simultaneously. Then, it follows that ⟨x, y1⟩ ∈ f , ⟨x, y2⟩ ∈ f , ⟨x, y1⟩ ∈ g, and
⟨x, y2⟩ ∈ g. Consequently, since f and g are single-valued (as they are functions), y1 = y2. In
other words, f ∩ g is a single-valued relation. Wherefore, f ∩ g is indeed a function.

Q.E.D. ■
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(b) Let f, g be functions once again;

∀x∀y[⟨x, y⟩ ∈ f ∪ g ⇐⇒ (xfy ∨ xgy)]

If f ∪ g is a function, it has to be single rooted, meaning that:

f ∪ g is a function

⇐⇒
[
∀x∀y1∀y2

(
[(xfy1 ∨ xgy1) ∧ (xfy2 ∨ xgy2)] =⇒ y1 = y2

)]
⇐⇒

[(
∀x∀y1∀y2[(xfy1 ∨ xgy1) ∧ (xfy2 ∨ xgy2)]

)
=⇒ y1 = y2

]
Since f, g are functions, meaning they are single-rooted and

it is never the case that (xfy1 ∧ xfy2) or (xgy1 ∧ xgy2) is true;
⇐⇒

[(
∀x∀y1∀y2[(xfy1 ∧ xgy2) ∨ (xfy2 ∨ xgy1)]

)
=⇒ y1 = y2

]
⇐⇒

[(
∀x∀y1∀y2(x ∈ dom f ∧ x ∈ dom g ∧ [(xfy1 ∧ xgy2) ∨ (xfy2 ∨ xgy1)])

)
=⇒ y1 = y2

]
⇐⇒

[(
∀x∀y1∀y2(x ∈ dom f ∩ dom g ∧ [(xfy1 ∧ xgy2) ∨ (xfy2 ∨ xgy1)])

)
=⇒ y1 = y2

]
⇐⇒

(
∀x(x ∈ dom f ∩ dom g =⇒ [f(x) = g(x)])

)
So, f ∪ g is a function iff f(x) = g(x) for every x in (dom f) ∩ (dom g).

Remarks (Big Check 1, 28/12/22): Again, this is unnecessarily convoluted and quite an
unreadable chunk of symbols. So, let’s redo this too!

Redo of proof:

Assume that f and g are functions so that f ∪ g is also a function, and let x ∈ (dom f) ∩ (dom g).
Then, we see that ⟨x, f(x)⟩ ∈ f and ⟨x, g(x)⟩ ∈ g. Consequently, ⟨x, f(x)⟩ and ⟨x, g(x)⟩ are in
f ∪ g. So, since f ∪ g is a function, f(x) = g(x) must hold true.

Conversely, now suppose f and g are functions such that f(x) = g(x) for every x in
(dom f)∩ (dom g). Clearly, f ∪ g can only contain ordered pairs, and is hence, a relation. Now, we
need to show that f ∪ g is single-valued. Let ⟨x, y1⟩ and ⟨x, y2⟩ be in f ∪ g. When both ordered
pairs belong to f or both belong to g, then y1 = y2 immediately, as f and g are functions.
Consider the case that one belongs in f and the other in g. Accordingly, f(x) = g(x) would mean
that y1 = y2 by our supposition. In any case, we conclude that y1 = y2. In other words, f ∪ g is
single-valued, thence it is a function.

Wherefore, f ∪ g is a function iff f(x) = g(x) for every x in (dom f) ∩ (dom g).

Q.E.D. ■
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1.2.5 Infinite Cartesian Products

31. ✓ Show that from the first form of the Axiom of Choice we can prove the second form, and
conversely:

First Form: For any relation R there is a function H ⊆ R with dom H = dom R

Second Form: For any set I and function H with domain I, if H(i) ̸= ∅ for all i ∈ I, then∏
i∈I

H(i) ̸= ∅.

The First Form Implies The Second:

Assume the first form of the AOC.
Let H be a function with domain I, the relation R = I ×

⋃
i∈I H(i), and

A = {⟨i, y⟩ |iRy ∧ y ∈ H(i)}.
If H(i) ̸= ∅ for all i ∈ I, domA = I.

If it isn’t clear enough to the reader; Since R =
{
⟨i, y⟩ |i ∈ I ∧ y ∈

⋃
i∈I H(i)

}
,

∀i∃y

i ∈ I =⇒ y ∈ H(i) ⊆
⋃
i∈I

H(i)

 ⇐⇒ ∀i∃y
(
i ∈ I =⇒ [iRy ∧ y ∈ H(i)]

)
So domA = {i|∃y(iAy)} = {i|iRy ∧ y ∈ H(i)} = I.

By the first form of the AOC, there exists a function f ⊆ R with dom f = domA = I.

Therefore,
∏
i∈I

H(i) =

{
f : I →

⋃
i∈I

H(i)

∣∣∣∣∣ (∀i ∈ I)[f(i) ∈ H(i)]

}
̸= ∅ since it contains at least the

function f constructed above.

When I = ∅,
⋃
i∈∅

H(i) = ∅.
∏
i∈I

H(i) =

{
∅ : ∅ → ∅

∣∣∣∣∣ (∀i ∈ ∅)[f(i) ∈ H(i)]

}
= {∅} ≠ ∅, because

(∀i ∈ ∅)[f(i) ∈ H(i)] is vacuously true.

The Second Form Implies The First:

Assume the second form of the AOC:

Again, let H be a function with domain I. Define the relation

E =

{
⟨i, y⟩ ∈ I ×

⋃
i∈I

H(i)

∣∣∣∣∣ y ∈ H(i)

}
, such that domE = I. If E ̸= ∅, then I ̸= ∅, and for all

i ∈ I, there exists a y ∈ H(i) (i.e. H(i) ̸= ∅). By the second form of the AOC, there exists a
function f : I →

⋃
i∈I H(i) such that for all i ∈ I, f(i) ∈ H(i). Wherefore, f ⊆ E (as the only

difference between them is that f has the extra condition that it must be single-valued) and
dom f = domE = I.
In the case that E = ∅, it already is a function. E ⊆ E and domE = domE. Hence, for all
relations E, there exists a function f with dom f = domE.

The definition of E above is done without loss of generality:
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We shall show that it is equivalent to defining a relation E ⊆ X × Y and letting domE = I.
Define H to be the function (with domain I) such that, for all i ∈ I,
y ∈ H(i) ⇐⇒ iEy. Thus, iEy ⇐⇒ y ∈

⋃
i∈I H(i) also.

Now,

iEy ⇐⇒ ⟨i, y⟩ ∈ I ×
⋃
i∈I

H(i) ∧ y ∈ H(i)

⇐⇒ ⟨i, y⟩ ∈

⟨a, b⟩

∣∣∣∣∣ a ∈ I ∧ b ∈
⋃
i∈I

H(i) ∧ b ∈ H(i)


⇐⇒ ⟨i, y⟩ ∈

{
⟨a, b⟩

∣∣∣∣∣ a ∈ domE ∧ aEb

}
⇐⇒ ⟨i, y⟩ ∈ {⟨a, b⟩ | aEb}
⇐⇒ iEy

Q.E.D. ■

Remarks (Big Check 1, 29/12/22): In the part for the first form implies the second, we already
constructed a specific function f . Hence, we should have used another symbol in∏
i∈I

H(i) =

{
f : I →

⋃
i∈I

H(i)

∣∣∣∣∣ (∀i ∈ I)[f(i) ∈ H(i)]

}
̸= ∅ instead. The presentation and choice of

words has much room for improvement. The first elaboration box is kinda unnecessary, and the
explanation there was hard to read. In addition, it could have been carefully woven to flow with
the rest of the text instead. Similarly with the second elaboration box, what it was trying to bring
across could have been incorporated into the portion above it. However, the general idea is there
and it isn’t so terrible as a whole that I’m getting a stroke reading it. Hence, I give it a bare ✓.
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1.2.6 Equivalence Relations

35. ✓ Show that for any R and x, we have [x]R = RJ{x}K

[x]R = {t|xRt} = {t|(∃x ∈ {x})xRt} = ran(R ↾ {x}) = RJ{x}K

Q.E.D. ■

37. ✓ Assume that Π is a partition of a set A. Define the relation RΠ as follows:

xRΠy ⇐⇒ (∃B ∈ Π)(x ∈ B ∧ y ∈ B)

Show tht RΠ is an equivalence relation on A. (This is a formalised version of the discussion at the
beginning of this section.)

RΠ is reflexive (on A):

(∀x ∈ A)(∃B ∈ Π)(x ∈ B) ⇐⇒ (∀x ∈ A)(∃B ∈ Π)(x ∈ B ∧ x ∈ B)

⇐⇒ (∀x ∈ A)(xRΠx)

RΠ is symmetric:

xRΠy ⇐⇒ (∃B ∈ Π)(x ∈ B ∧ y ∈ B)

⇐⇒ (∃B ∈ Π)(y ∈ B ∧ x ∈ B)

⇐⇒ yRΠx

RΠ is transitive:

(xRΠy ∧ yRΠz) ⇐⇒ [(∃B ∈ Π)(x ∈ B ∧ y ∈ B) ∧ (∃C ∈ Π)(y ∈ C ∧ z ∈ C)]

Since Π is a partition of A, its elements are disjoint, i.e.: Iff B ̸= C, B ∩ C = ∅. Therefore, in
order for y ∈ B ∧ y ∈ C, B = C;

(xRΠy ∧ yRΠz) ⇐⇒ [(∃B ∈ Π)(x ∈ B ∧ y ∈ B) ∧ (∃B ∈ Π)(y ∈ B ∧ z ∈ B)]

⇐⇒ (∃B ∈ Π)[(x ∈ B ∧ y ∈ B) ∧ (y ∈ B ∧ z ∈ B)]

⇐⇒ (∃B ∈ Π)[(x ∈ B ∧ y ∈ B ∧ z ∈ B)]

=⇒ (∃B ∈ Π)[(x ∈ B ∧ z ∈ B)]

=⇒ xRΠz

So, since the relation RΠ on the set A satisfies all 3 properties of reflexivity, symmetry, and
transitivity, RΠ is indeed an equivalence relation on A.

Q.E.D. ■

Remarks (Big Check 1, 29/12/22): Yeah should be correct. However, it would again have been
nice to have more English words and explanations rather than symbols.
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Self-Exercise 1. Let F : A→ B and for points in A define

x ∼ y iff F (x) = F (y).

The relation ∼ is an equivalence relation on A. There is a unique one-to-one function
F̂ : A/∼ → B such that F = F̂ ◦ φ (where φ is the natural map as shown in Fig. 13)
(φ : A→ A/∼ and φ(x) = [x]∼). [Example from page 58-59].

Prove the existence of the unique F̂ .

First Edition:

Existance of F̂ :

By Lemma 3N, for all x, y; x ∼ y iff [x]∼ = [y]∼. So, [x]∼ = [y]∼ iff F (x) = F (y). Wherefore,
F (x) ∈ ranF iff [x]∼ ∈ A/∼.

Accordingly, we can define F̂ ([x]∼) = F (x) (for all x). By this definition, F̂ is injective:

F̂ ([x]∼) = F̂ ([y]∼)

F (x) = F (y)

[x]∼ = [y]∼

Next, φ : A→ A/∼ is surjective (i.e. ranφ = A/∼); because for all equivalence classes
[x]∼ ∈ A/∼ , x ∈ A = domφ such that φ(x) = [x]∼.

For even more details:

∀z[z ∈ A/∼ =⇒ ∃x(x ∈ A ∧ z = [x]∼) =⇒ ∃x(⟨x, [x]∼⟩ ∈ φ)]

∀x[⟨x, [x]∼⟩ ∈ φ =⇒ [x]∼ ∈ A/∼]

It then follows that [x]∼ ∈ A/∼ ⇐⇒ ⟨x, [x]∼⟩ ∈ φ. By definition, ranφ = A/∼.

As a result, by Theorem 3H dom(F̂ ◦ φ) = {x ∈ A |φ(x) ∈ A/∼} = A since ranφ = A/∼ .

Thence, there exists a function F̂ : A→ A/∼ such that (F̂ ◦ φ) : A→ B where F = F̂ ◦ φ.

Uniqueness of F̂ :

Assume there exists another injective function G̃ : A/∼ → B such that F = G̃ ◦ φ and G̃ ̸= F̂ . In
order for G̃ ̸= F̂ , there are three possible cases:

1. dom G̃ ̸= dom F̂ : Then this immediately contradicts our assumption that G̃ : A/∼ → B.
Naturally, this is thus not possible.

2. ran G̃ ̸= ran F̂ (F̂ and G̃ are otherwise identical) : Consequently,

ran(G̃ ◦ φ) = {t | ∃x[x(G̃ ◦ φ)t]} F = F̂ ◦ φ
= {t | ∃x∃y(xφy ∧ yG̃t)} ranF = ran(F̂ ◦ φ)
= {t ∈ ran G̃ |φ(x) ∈ dom G̃} = {t ∈ ran F̂ |φ(x) ∈ dom F̂}
= ran G̃ ̸= ran F̂ = ran F̂

This implies that ran(G̃ ◦ φ) ̸= ranF . However, this would mean that F ̸= G̃ ◦ φ. By
contradiction, this is not possible either.

3. There exists some x such that G̃([x]∼) ̸= F (x) (F̂ and G̃ are otherwise identical): By Theorem

3H, dom(G̃ ◦ φ) = A, and for all x ∈ A, (G̃ ◦ φ)(x) = ˜G(φ(x)) = G̃([x]∼). Thus, (for all x)

G̃([x]∼) ̸= F (x) ⇐⇒ (G̃ ◦ φ)(x) ̸= F (x)

Simultaneously, by our assumption, F = G̃ ◦ φ. Thus is true iff, for all x, F (x) = (G̃ ◦ φ)(x).
These two statement cannot be true simultaneously. Hence, by contradiction, this case is
impossible.
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□ All other cases are when multiple of the above situations are true simultaneously. Since we
already shown above that none of them are true individually, all other cases described above
are false too.
(Although the above proof that 2. and 3. are false relies on dom G̃ ̸= dom F̂ , if that is not true, then from 1.

it would already be false.)

As a result, there exists no injective function G̃ : A/∼ → B such that F = G̃ ◦ φ and G̃ ̸= F̂ .

So, the function F̂ we have constructed is unique.

Q.E.D. ■

Remarks/AFI:

Existance of F̂ :

"we can define F̂ ([x]∼) = F (x) (for all x)." We do not actually construct the function F̂
here. This is already assuming (without rigorous justification) that a function F̂ with such a
mapping exists, and hence, creating a circular argument technically. Instead, we construct the set
of ordered pairs we use to define what is F̂ . See Revised, Second Edition. After we construct it
rigorously, yes we do indeed find that the claim F̂ ([x]∼) = F (x) is true under that construction.
However, we cannot say F̂ ([x]∼) = F (x) without that rigorous construction.

Uniqueness of F̂ :

Should work fine. However; There’s a simpler and more elegant way to do it. Simply assume
F̂ ◦ φ = G̃ ◦ φ and show then show that F̂ = G̃! :D

Credit/Thanks to Neverbloom#6760 on the math discord for helping me check my work and give
me feedback.
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Revised, Second Edition:

Existance of F̂ : ✓

By Corollary 3C, the set (A/∼)× ranF exists. Using a subset axiom, for all sets (A/∼)× ranF ,
there exists F̂ : A/∼ → B where

F̂ = {⟨a, b⟩ | a ∈ A/∼ ∧ b ∈ ranF ∧ F (a) = b}
= {⟨[x]∼, F (x)⟩ |x ∈ A} as domF = A

This is indeed a function, because it is single-valued:

[x]∼ = [x′]∼

x ∼ x′ by Lemma 3N

F (x) = F (x′)

⟨[x]∼, F (x)⟩ = ⟨[x′]∼, f(x′)⟩
F̂ ([x]∼) = F̂ ([x′]∼)

By this definition, F̂ is injective:

F̂ ([x]∼) = F̂ ([y]∼)

F (x) = F (y)

x ∼ y

[x]∼ = [y]∼

So, by Theorem 3H; dom(F̂ ◦ φ) = {x ∈ A |φ(x) ∈ A/∼} = A. Lastly, by the same theorem, for
all x ∈ A, (F̂ ◦ φ)(x) = F̂ (φ(x)) = F̂ ([x]∼) = F (x).

Thence, there indeed exists an injective function F̂ : A/∼ → B such that (F̂ ◦ φ) : A→ B and
F = F̂ ◦ φ.

Uniquness of F̂ :

If there exists also an injective function G̃ : A/∼ → B such that (G̃ ◦ φ) : A→ B and F = G̃ ◦ φ,
then F̂ ◦ φ = G̃ ◦ φ.
Fact 1: For all y ∈ A/∼, there exists an x ∈ A such that y = [x]∼ = φ(x).

F̂ ◦ φ = G̃ ◦ φ
For all x ∈ A, F̂ (φ(x)) = G̃(φ(x)) by Theorem 3H

F̂ ([x]∼) = G̃([x]∼)

For all y ∈ A/∼ , F̂ (y) = G̃(y) by Fact 1

Wherefore, F̂ = {⟨y, F̂ (y)⟩ | y ∈ A/∼} = {⟨y, G̃(y)⟩ | y ∈ A/∼} = G̃. Which means that the F̂ we
have constructed is indeed unique.

Remarks (Big Check 1, 29/12/22): There’s an error in the part highlighted in green; it should
probably be replaced with (∃x ∈ a)F (x) = b, because the domain of F is A and not A/∼. Then,
for the reasoning in the next line we just have to add “and A/∼ is a partition of A”. Otherwise
the proof looks good, the presentation is decent, tho not the best.

58



Self-Exercise 1.1: ✓ The Universal Property of The Quotient Set: If X is a set and ∼ an
equivalence relation on X, then the natural/canonical projection φ : X → X/∼ such that
φ(x) = [x]∼ can be formed. For any other set Y and function f : X → Y that respects ∼, i.e (for
all x and x′) x ∼ x′ =⇒ f(x) = f(x′); there exists a unique function F̂ : X/∼ → Y such that
f = F̂ ◦ φ:

X Y

X/∼

φ

f

F̂

On the contrary, if f does not respect ∼ , then there does not exist such a function F̂ : X/∼ → Y
such that f = F̂ ◦ φ.

Self-Exercise 1 was a special case of this theorem, where we assumed that x ∼ x′ iff f(x) = f(x′).

Prove the Universal Property of The Quotient Set.

Existance of φ:

By Corollary 3C, the set X × (X/∼) exists. By the Axiom Schema of Specification, we construct
the natural/canonical projection φ : X → X/∼ :
Fact 1: For all v ∈ X/∼, there exists an x ∈ X such that v = [x]∼. (By defs.)

φ = {⟨u, v⟩ |u ∈ X ∧ v ∈ (X/∼) ∧ v = [u]∼}
φ = {⟨u, [u]∼⟩ |u ∈ X} By Fact 1

Existance of F̂ :

Let f : X → Y be a function that respects ∼ ; By Corollary 3C, the set (X/∼)× ranF exists.
Using a subset axiom on (X/∼)× ranF , define the function F̂ : X/∼ → Y where

F̂ = {⟨a, b⟩ | a ∈ X/∼ ∧ b ∈ ran f ∧ f(a) = b}
= {⟨[x]∼, f(x)⟩ |x ∈ X} as dom f = X

This is indeed a function, because it is single-valued:

[x]∼ = [x′]∼

x ∼ x′ by Lemma 3N

f(x) = f(x′)

⟨[x]∼, f(x)⟩ = ⟨[x′]∼, f(x′)⟩
F̂ ([x]∼) = F̂ ([x′]∼)

So, by Theorem 3H; dom(F̂ ◦ φ) = {x ∈ X |φ(x) ∈ X/∼} = X. Lastly, by the same theorem, for
all x ∈ X, (F̂ ◦ φ)(x) = F̂ (φ(x)) = F̂ ([x]∼) = f(x).
Consequently, f = {⟨x, f(x)⟩ |x ∈ X} = {⟨x, (F̂ ◦ φ)(x)⟩ |x ∈ X} = (F̂ ◦ φ)

Thence, there indeed exists a function F̂ : X/∼ → B such that (F̂ ◦ φ) : X → B and f = F̂ ◦ φ.
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Uniquness of F̂ :

If there also exists a function G̃ : X/∼ → B such that (G̃ ◦ φ) : X → B and f = G̃ ◦ φ, then
F̂ ◦ φ = G̃ ◦ φ.

F̂ ◦ φ = G̃ ◦ φ
For all x ∈ X, F̂ (φ(x)) = G̃(φ(x)) by Theorem 3H

F̂ ([x]∼) = G̃([x]∼)

For all v ∈ X/∼ , F̂ (v) = G̃(v) by Fact 1

Wherefore, F̂ = {⟨v, F̂ (v)⟩ | v ∈ X/∼} = {⟨v, G̃(v)⟩ | v ∈ X/∼} = G̃. Which means that the F̂ we
have constructed is indeed unique.

If f does not respect ∼ , then there does not exist such a F̂ :

Assume that f does not respect ∼ and there still exists such a function F̂ : X/∼ → Y so that
f = F̂ ◦ φ. Note again that f(x) = (F̂ ◦ φ)(x) = F̂ (φ(x)) = F̂ ([x]∼) (Theorem 3H). Then for all x
and x′ such that x ∼ x′,

x ∼ x′

[x]∼ = [x′]∼ by Lemma 3N

F̂ ([x]∼) = F̂ ([x′]∼)

f(x) = f(x′)

However, this contradicts our assumption that f does not respect ∼ , i.e. that there exists some x
and x′ such that x ∼ x′ and f(x) ̸= f(x′). So, if f does not respect ∼ , then there does not exist
such a function F̂ such that f = F̂ ◦ φ.

Remarks (Big Check 1, 29/12/22): Actually since we claimed φ to be a function by writing
φ : X → X/∼, it would have been good to verify that it is indeed a function. However, it is indeed
pretty trivial. The part in green is just the same issue as before. Again, other than that the proof
looks good, the presentation is decent, tho not the best.
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40. ✓ Define an equivalence relation R on the set P of positive integers by

mRn ⇐⇒ m and n have the same number of prime factors.

Is there a function f : P/R→ P/R such that f([n]R) = [3n]R for each n?

We define the function F : P → P such that F (n) = 3n. F is compatible with R. If mRn, then m
and n have the same number of (unique) prime factors. Let this number be k. There are two
cases to consider.

1. 3 is not a prime factor of m or n. Then f(m) = 3m and f(n) = 3n both have k + 1 (unique)
prime factors. As a result, f(m)Rf(n) is true.

2. 3 is a prime factor of m and n. Then f(m) = 3m and f(n) = 3n have k (unique) prime
factors. Hence, f(m)Rf(n) holds again.

Indeed, we see that F is compatible with R.

Wherefore, by Theorem 3Q, the function f : P/R→ P/R exists such that
f([n]R) = [F (n)]R = [3n]R.

41. ✓ Let R be the set of real numbers and define the relation Q on R× R by ⟨u, v⟩Q⟨x, y⟩ iff
u+ y = x+ v.

(a) ✓ Show that Q is an equivalence relation on R× R.

(b) ✓ Is there a function G : (R× R)/Q→ (R× R)/Q satisfying the equation

G([⟨x, y⟩]Q) = [⟨x+ 2y, y + 2x⟩]Q?

(a) Q is Reflexive on R× R:

For all ⟨u, v⟩ ∈ R× R, u+ v = v + u because addition of real numbers is commutative.
Consequently, ⟨u, v⟩Q⟨u, v⟩.

Q is Symmetric:

For all ⟨u, v⟩, ⟨x, y⟩ ∈ R×R; if ⟨u, v⟩Q⟨x, y⟩, then u+ y = x+ v is true. Hence, x+ v = u+ y
immediately holds, so does ⟨x, y⟩Q⟨u, v⟩.

Q is Transitive:

For all ⟨u, v⟩, ⟨x, y⟩, ⟨a, b⟩ ∈ R× R: If ⟨u, v⟩Q⟨x, y⟩ and ⟨x, y⟩Q⟨a, b⟩ are true, it means that
u+ y = x+ v and x+ b = a+ y. So, by normal arithmetic on real numbers,
u+ y = a+ y − b+ v thus u+ b = a+ v, meaning ⟨u, v⟩Q⟨a, b⟩ is true.

Q is an equivalence relation on A since all three properties of an equivalence relation on a
set have been proven true.

Remarks (Big Check 1, 29/12/22): u+ v = v + u tells us that ⟨u, v⟩Q⟨v, u⟩. Which is not
what we wanted. Actually we could simply say that u+ v = u+ v, after which ⟨u, v⟩Q⟨u, v⟩
follows easily. Otherwise, looks good.

(b) Let f : R× R → R× R such that f(⟨x, y⟩) = ⟨x+ 2y, y + 2x⟩.
⟨u, v⟩Q⟨x, y⟩ implies

u+ y = x+ v

2v + 2x = 2y + 2u

(u+ y) + (2v + 2x) = (x+ v) + (2y + 2u)

(u+ 2v) + (y + 2x) = (x+ 2y) + (v + 2u)

As a result, ⟨u+ 2v, v+ 2u⟩Q⟨x+ 2y, y+ 2x⟩, i.e. f(⟨u, v⟩)Qf(⟨x, y⟩). which means that f is
indeed compatible with Q.
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Now, by Theorem 3Q, there exists a function G : (R× R)/Q→ (R× R)/Q such that
G([⟨x, y⟩]Q) = [f(⟨x, y⟩)]Q = [⟨x+ 2y, y + 2x⟩]Q.
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42. × State precisely the ”analogous results” mentioned in Theorem 3Q. (This will require
extending the concept of compatibility in a suitable way.)

Assume that R is an equivalence relation on (A×A)×A. Let the function F : A×A→ A be
friendly with R, i.e. (for all x, y, z, i, j, k ∈ A):
⟨⟨x, y⟩, z⟩R⟨⟨i, j⟩, k⟩ =⇒ ⟨⟨x, y⟩, F (⟨x, y⟩)⟩R⟨⟨i, j⟩, F (⟨i, j⟩)⟩. Then, there exists a unique function
F̂ : ((A×A)×A)/R→ ((A×A)×A)/R such that

F̂ ([⟨⟨x, y⟩, z⟩]R) = [⟨⟨x, y⟩, F (⟨x, y⟩)⟩]R(⋆⋆)

If F is not friendly / is hostile with R, then no such F̂ exists.

Existance of F̂ :

Remarks: Not the most elegant extension of the results of Theorem 3Q by a long shot lol.

One that seems to be much better is as follows:
The analogous results are: Assume that R is an equivalence relation on A and that F : A×A→ A.
If F is compatible with R, then there exists a unique F̂ : A/R×A/R→ A/R such that

F̂ ([x], [y]) = [F ⟨x, y⟩] for all x ∈ A.

If F is not compatible with R, then no such F̂ exists. Of course, we must extend the definition of
compatibility. Note that we would like to have the following commutative diagram:

A×A A

A/R×A/R A/R

F

F̂

From this, we see that if ⟨x, y⟩ and ⟨u, v⟩ have the same image under A×A→ (A/R)× (A/R),
that is, ⟨[x], [y]⟩ = ⟨[u], [v]⟩, then we also like [F ⟨x, y⟩] = [F ⟨u, v⟩].
This suggests that we define that F is compatible with R if for any x, y, u, v ∈ R,

xRy ∧ uRv =⇒ F ⟨x, y⟩RF ⟨u, v⟩.

Remarks (Big Check 1, 29/12/22): Yeah is not really a great extension of Theorem 3Q. But hey
we learn and bounce onto the next one.
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1.2.7 Ordering Relations

43. ✓ Assume that R is a linear ordering on a set A. Show that R−1 is also a linear ordering on A.

R−1 is A Relation on A:

Since R is a linear ordering on A, R ⊆ A2. As a result, for all z

z ∈ R−1 = {⟨y, x⟩ |xRy} =⇒ ∃x∃y
(
z = ⟨y, x⟩ ∈ R−1

)
=⇒ ⟨x, y⟩ ∈ R

=⇒ ⟨x, y⟩ ∈ A2

Which means that R−1 ⊆ A2, and R−1 is also a relation on A.

R−1 is Transitive:

For all x, y, z ∈ A;(
zR−1y ∧ yR−1x

)
⇐⇒ (xRy ∧ yRz)
=⇒ xRz by the transitivity of the linear order R

=⇒ zR−1x

R−1 Satisfies Trichotomy on A:

For all x, y ∈ A, since R is a linear ordering satisfying trichotomy on A; either xRy, x = y, or yRx
(but never more than one). Consequently, we now have three cases to consider, that are only true
one at a time and never true simultaneously.

i. xRy: Then yR−1x.

ii. x = y: Then y = x.

iii. yRx: Then xR−1y.

Therefore, for all x, y ∈ A; precisely one of yR−1x, y = x, and xR−1y is true. So, R−1 satisfies
trichotomy on A.

Wherefore, since R−1 is a relation on A which is transitive and satisfies trichotomy on A, R−1 is a
linear ordering on the set A.

Remarks (Big Check 1, 29/12/22): Instead of saying z ∈ R−1, we should just write ⟨y, x⟩ ∈ R−1.
To be specific, we should conclude the first part by saying R−1 is a binary relation on A, not just
any relation on A. The last part on showing that R−1 satisfies trichotomy on A could be more
succinct and straight to the point. But ok I get the main arguments which are sound.
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44. ✓ Assume that < is a linear ordering on a set A. Assume that f : A→ A and that f has the
property that whenever x < y, then f(x) < f(y). Show that f is one-to-one and that whenever
f(x) < f(y), then x < y.

f is an injective function:

If f(x) = f(y), then as x, y ∈ dom f = A and < satisfies trichotomy on A, one and only one of the
following are true:

(i) x < y, implying f(x) < f(y).

(ii) x = y, implying f(x) = f(y).

(iii) y < x, implying f(y) < f(x).

(i) and (iii) are impossible because they contradict our assumption that f(x) = f(y). Hence,
x = y is the only possibility.
In other words, for all x, y ∈ A, if f(x) = f(y), then x = y. f is now an injective function.

Whenever f(x) < f(y), then x < y:

Assume f(x) < f(y). Again, by the same reasons, exactly one of the following hold true;

(I) x < y, implying f(x) < f(y).

(II) x = y, implying f(x) = f(y).

(III) y < x, implying f(y) < f(x).

In this case, (II) and (III) are false since they contradict our assumption that f(x) < f(y). So, (I)
where x < y is the only possibility.
Wherefore, if f(x) < f(y), then x < y.

In sum, our results for this question are that, for all x, y ∈ A,

1. x < y iff f(x) < f(y)

2. x = y iff f(x) = f(y)
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45. ✓ Assume that <A and <B are linear orderings on A and B, respectively.
Define the binary relation <L on the Cartesian product A×B by:

⟨a1, b1⟩ <L ⟨a2, b2⟩ iff either a1 <A a2 or (a1 = a2 & b1 <B b2)

Show that <L is a linear ordering on A×B. (The relation <L is called a lexicographic ordering,
being the ordering used in making dictionaries.)

<L is a Transitive Relation:

Whenever ⟨a1, b1⟩ <L ⟨a2, b2⟩ and ⟨a2, b2⟩ <L ⟨a3, b3⟩ is true, which is equivalent to
[a1 <A a2 or (a1 = a2 & b1 <B b2)] and [a2 <A a3 or (a2 = a3 & b2 <B b3)],
there are 4 cases to consider:

1. a1 <A a2 and a2 <A a3: This implies than a1 <A a3 by the transitivity of the linear ordering
<A. Therefore, ⟨a1, b1⟩ <L ⟨a3, b3⟩.

2. a1 <A a2 and (a2 = a3 & b2 <B b3): Then, a1 <A a3. So, ⟨a1, b1⟩ <L ⟨a3, b3⟩.

3. (a1 = a2 & b1 <B b2) and a2 <A a3: Again, a1 <A a3. Hence, ⟨a1, b1⟩ <L ⟨a3, b3⟩.

4. (a1 = a2 & b1 <B b2) and (a2 = a3 & b2 <B b3): Now, (a1 = a3 & b1 <B b3)
by the transitivity of the linear ordering <B . Accordingly, ⟨a1, b1⟩ <L ⟨a3, b3⟩.

Consequently, we see that if ⟨a1, b1⟩ <L ⟨a2, b2⟩ and ⟨a2, b2⟩ <L ⟨a3, b3⟩ is true, then
⟨a1, b1⟩ <L ⟨a3, b3⟩ is true. In other words, <L is transitive.

<L satifies trichotomy on A:

For all ⟨a1, b1⟩ and ⟨a2, b2⟩ in the Cartesian product A×B, there are 4 cases worth considering:

(I) a1 = a2 and b1 = b2: Then, by definition, ⟨a1, b1⟩ = ⟨a2, b2⟩.

(II) a1 <A a2 (whether b1 = b2, b1 <B b2, or b2 <B b1 is inconsequential): Immediately,
⟨a1, b1⟩ <L ⟨a2, b2⟩ is true.

(III) a1 = a2 and b1 <B b2. Thus, ⟨a1, b1⟩ <L ⟨a2, b2⟩ again.

(IV) a2 <A a1 (whether b1 = b2, b1 <B b2, or b2 <B b1 is inconsequential): It follows that
⟨a2, b2⟩ <L ⟨a1, b1⟩.

(V) a1 = a2 and b2 <B b1. Similarly, we have ⟨a2, b2⟩ <L ⟨a1, b1⟩.

Wherefore, for all χ1, χ2 ∈ A×B, one and only one of χ1 = χ2, χ1 <L χ2, and χ2 <L χ1 is true.
i.e. <L satisfies trichotomy on A.

So, we conclude that <L is a linear ordering on the Cartesian product A×B — since the binary
relation <L on A×B satisfies transitivity, and trichotomy on A.
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1.2.8 Review Exercises

49. ✓ Find as many equivalence relations as you can on the set {0, 1, 2}.

• {⟨0, 0⟩, ⟨1, 1⟩, ⟨2, 2⟩}.

• {⟨1, 1⟩, ⟨2, 2⟩, ⟨1, 2⟩, ⟨2, 1⟩, ⟨0, 0⟩}.

• {⟨0, 0⟩, ⟨0, 1⟩, ⟨1, 0⟩, ⟨1, 1⟩, ⟨2, 2⟩}.

• {⟨0, 0⟩, ⟨0, 2⟩, ⟨2, 0⟩, ⟨2, 2⟩, ⟨1, 1⟩}.

• {⟨0, 0⟩, ⟨0, 1⟩, ⟨1, 0⟩, ⟨1, 1⟩, ⟨0, 2⟩, ⟨2, 0⟩, ⟨2, 2⟩, ⟨1, 2⟩, ⟨2, 1⟩}.

52. ✓ Suppose that A×B = C ×D. Under what conditions can we conclude that A = C and
B = D?

It must be that the sets A, B, C, D are nonempty.

Self-Exercise 2: × Prove that if the sets A, B, C, D are nonempty, and A×B = C ×D; then
A = C and B = D.

Assume that A ̸= C or B ̸= D, consider the following two cases. Then, there is some element that
belongs in A but not in C, or in C but not in A. Now, suppose, without loss of generality, that
exists x ∈ A such that x /∈ C. For this x and all b ∈ B, ⟨x, b⟩ ∈ A×B by Lemma 3B but
⟨x, b⟩ /∈ C ×D (See Details). However, this means A×B ̸= C ×D, contradicting our prior
assumption that A×B = C ×D. The same argument holds for B ̸= D as well. Therefore,
A×B = C ×D must imply A = C and B = D.

See Details:
By Lemma 3B

∀x∀y(x, y ∈ A ∪B =⇒ ⟨x, y⟩ ∈ PPC) ⇐⇒ ∀x∀y
(
[(x ∈ A ∨ x ∈ B) ∧ (y ∈ A ∨ y ∈ B)]

=⇒ ⟨x, y⟩ ∈ PPC
)

=⇒ ∀x∀y
(
(x ∈ A ∧ y ∈ B) =⇒ ⟨x, y⟩ ∈ PPC

)
=⇒ ∀x∀y

(
(x ∈ A ∧ y ∈ B) =⇒ ⟨x, y⟩ ∈ A×B

)
So, for the aforementioned x, indeed ⟨x, b⟩ ∈ A×B for all b ∈ B.

While for Corollary 3C, since for this choice of x, it is not in C, thus ⟨x, b⟩ /∈ C ×D, even if b ∈ D.

Remarks (Big Check 1, 29/12/22): The presentation and phrasing of this has much room for
improvement. Also, we can actually do a simple direct proof over here by showing that A ⊆ C
and B ⊆ D, then show C ⊆ A and D ⊆ B thereafter using the same procedure. Good try tho :D

67



58. ✓ Give an example to show that F JF−1JSKK is not always the same as S.

Let the function F : R → R+
0 such that, for all x ∈ R, F (x) = x2. Then, F JF−1JR−KK = ∅ ̸= R−.

Self-Exercise 3.

i. × Prove that S = F JF−1JSKK iff S ⊆ ranF .

ii. ✓ Prove that S = F−1JF JSKK iff S ⊆ domF .

i. First, notice the identity F JF−1JSKK = S ∩ ranF

F JF−1JSKK = F J{x | (∃y ∈ S)yF−1x}K
= F J{x | (∃y ∈ S)xFy}K
= {y | y ∈ S ∧ xFy}
= {y ∈ S |xFy}
= S ∩ ranF

( ⇐= ) Now, if S ⊆ ranF , then F JF−1JSKK = F J{x | (∃y ∈ S)yF−1x}K = S ∩ ranF = S.

( =⇒ ) Conversely, assume S = F JF−1JSKK = S ∩ ranF . Consequently;

∀y[(y ∈ S ∧ y ∈ ranF ) ⇐⇒ y ∈ S] =⇒ ∀y[y ∈ S =⇒ y ∈ ranF ]

S ⊆ ranF as we wanted.

Thence, S = F JF−1JSKK iff S ⊆ ranF .

ii. Let F = G−1; now by part i. S = G−1
r(
G−1

)−1 JSK
z
iff S ⊆ ranG−1. With Theorem 3E,

we know that G−1
r(
G−1

)−1 JSK
z
= G−1 JGJSKK and ranG−1 = domG. By combining our

results, S = G−1 JGJSKK iff S = domG. Since G−1 and F were both chosen arbitrarily, so
the statement is proven.

Remarks (Big Check 1, 29/12/22): The presentation here, especially for part i. is frankly terrible.
Its hard to read and understand, obfuscated by a wall of symbols that at one point didn’t even
transition properly. Namely, it isn’t clearly shown how we got from F J{x | (∃y ∈ S)xFy}K to
{y | y ∈ S ∧ xFy}. While the proof to part ii. is indeed better, its presentation still has lots of
room for improvement.
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1.3 Natural Numbers

1.3.1 Inductive Sets

Self-Proof of Theorem 4C: Prove Theorem 4C. ✓

0 Is Not The Successor of Any Natural Number:
(This part is not needed in the proof but just put it here for fun)

For all sets a, a is either empty or nonempty. So we have two cases to consider:

1. a = ∅. This implies that a ∪ {a} = ∅ ∪ {∅} = {∅} ≠ ∅.

2. a ̸= ∅. Thus, there exists a set x such that x ∈ a. Thus x ∈ a ∪ {a} too. Which means
a ∪ {a} ≠ ∅.

Consequently, there does not exist any set such that its successor is ∅, much less a natural
number.

Remarks (Big Check 1, 28/12/22): Actually we can just consider an arbitrary set x, because then
we know {x} contains x and is hence nonempty. Consequently, this must mean that x+ is
nonempty. There’s no need to split it casewise into x = ∅ and x ̸= ∅.

Every Nonzero Natural Number is The Successor of Some Natural Number:

Now, we construct the inductive set ω′ of natural numbers such that every nonzero natural
number in ω′ is the successor of some natural number, i.e.:

∀x
(
x ∈ ω′ ⇐⇒

(
x ∈ ω ∧

(
∃y(y ∈ ω ∧ y+ = x) ∨ x = ∅

)))
By definition, ∅ ∈ ω′ . Notice that for all x, x ∈ ω′ implies x+ ∈ ω′:

x ∈ ω′ =⇒ x ∈ ω =⇒
(
x ∈ ω ∧ x+ ∈ ω

)
=⇒ x+ ∈ ω′

As a result, ω′ is an inductive subset of ω. Thence by the Induction Principle for ω; ω′ = ω.

Wherefore, indeed every nonzero natural number is the successor of some natural number.

Remarks (Big Check 1, 29/12/22): There’s no need to apply the Axiom Schema of Specification
that explicitly. Using set builder notation is just as rigorous in this context. In fact, set builder
notation is much more clear, concise, and straight to the point.

1. ✓ Show that 1 ̸= 3, i.e., that ∅+ = ∅+++.

We know that 1 = ∅+ = {∅} while 3 = ∅+++ = {∅, {∅}, {∅, {∅}}}. Hence, since there exists
sets in 1 that are not in 3 — namely {∅} and {∅, {∅}} — they are not equal.
(Because it is false that for all n, n ∈ 1 iff n ∈ 3.)

Remarks (Big Check 1, 29/12/22): This is quite the simple question but my answer here has
much to be improved upon. Namely, for a question of such simplicity, it’ll probably be good to
add a bit more detail on the calculation of what the set 3 is, though its rather trivial. More
importantly is the phrasing of the explanation, it should be clearly and more straight to the point.
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1.3.2 Peano’s Postulates

Self-Exercise 4: Prove that all inductive sets are infinite. ✓

Assume that there exists a finite inductive set A, i.e. it contains only n elements for some natural
number n. Let the set x be in A.

Then: x, x+, x++, . . . , x

n times︷︸︸︷
+···+ ∈ A. This means that there are (at least) n+ 1 elements in A.

However, this contradicts with the fact that A contains only n elements. So, there does not exist
some natural number n and inductive set A; such that we can say an A contains only n elements.
Wherefore, all inductive sets are finite.

I think we may need to do the cardinality chapter first in order to create a proof that is fully satisfactory, both

intuitively and rigorously; since the terms ”finite”, ”infinite”, and ”cardinality” are defined there.

Remarks (Big Check 1, 29/12/22): Like what I said in my remarks after writing the above proof, I

wasn’t really satisfied with it. Mainly because of the handwavy notation used: x

n times︷︸︸︷
+···+ ∈ A. I

think I now have an idea of how to rigorously prove this.

Redo of Proof:

Let S be an inductive set and x be. Oh wait wait wait. There’s a simple and easy way to go
about this proof that I just realised lmao.

Redo of Proof, V1.1:

Let S be an inductive set. By Theorem 4B, ω is a subset of every inductive set. Hence, let the
identity function Iω : ω → S so that Iω(n) = n. Clearly, Iω must be injective; let f(n) = f(n′),
then immediately, n = n′ by definition (since f(n) = n and f(n′) = n′). Wherefore, we know that
cardω ≤ cardS, and S must be infinite.

*Note: I’m doing this after Chapter 5 on the construction of the reals. So, I think this should
correspond rigorously but I didn’t quote any theorems here (since I haven’t learnt them yet).

Self-Proof of Theorem 4D: ✓

ω is inductive and hence closed under the successor operation. Which means that σ : ω → ω.

(i) σ is a function:

Let n1 = n2 ∈ ω. Then, σ(n1) = σ(n2):

k ∈ σ(n1) ⇐⇒ k ∈ n+1
⇐⇒ k ∈ n1 ∪ {n1}
⇐⇒ k ∈ n1 ∨ k = n1

⇐⇒ k ∈ n2 ∨ k = n2

⇐⇒ k ∈ n2 ∪ {n2}
⇐⇒ k ∈ n+2
⇐⇒ k ∈ σ(n2)

(ii) 0 /∈ ranσ:

For all sets n, n is either empty or nonempty. So we have two cases to consider:

(a) n = ∅. This implies that n ∪ {n} = ∅ ∪ {∅} = {∅} ≠ ∅.

(b) n ̸= ∅. Thus, there exists a set x such that x ∈ n. Thus x ∈ n ∪ {n} too. Which means
n ∪ {n} ≠ ∅.

Consequently, there exists no set n such that n+ = ∅, much less for n ∈ ω.
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(iii) σ is injective:

Assume there exists some n,m ∈ ω so that n+ = m+. Then, n ∪ {n} = m ∪ {m}. Which
means that n ∈ m or n = m. And m ∈ n or m = n.
Ah yes, why couldn’t I prove this after a couple hours? Because I needed the theorem from
the next page. P a i n . Giving some credit to myself, I did think of using the big union to
arrive at Enderton’s answer, however, I didn’t delve that deep in it to derive all the
theorems that allow me to rigorously state that. But, if I were to continue the above proof
with usage of the Axioms Enderton has not covered, i.e. the Axiom of Regularity and the
Axiom of Replacement, I probably could have arrived at a rigorous proof.

To quote Enderton; ”We can now complete the proof of Theorem 4D; it remained for us to
show that the successor operation on ω is one-to-one. If m+ = n+ for m and n in ω, then⋃
(m+) =

⋃
(n+). But since m and n are transitive sets, we have

⋃
(m+) = m and⋃

(n+) = n by Theorem 4E. Hence m = n. ”

(iv) By definition, any subset A of ω containing ∅ and which is closed under the successor
operation is an inductive set. Therefore, by the Induction Principle for ω, A = ω

Wherefore, since all 3 conditions are met, ⟨ω, σ, 0⟩ is indeed a Peano system.

Remarks (Big Check 1, 30/12/22): For the proof that σ is a function, there’s no need to go such a
lengthy route. We can simply say that σ(n1) = n+1 = n1 ∪ {n1}. And hence, by our assumption
that n1 = n2, that is the same as n2 ∪ {n2} = n+2 = σ(n2). While for the part on showing
0 /∈ ranσ, its the same thing as in our Self-Proof of Theorem 4C; we have no need to split it
casewise. And actually, we can simply quote Theorem 4C or our self-proof of it.
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Self-Proof of Theorem 4F: ✓

Let the subset T of ω contain all transitive natural numbers, i.e.

T = {n ∈ ω | ∀k∀m(k ∈ m ∈ n =⇒ k ∈ n)}

Vacuously, ∅ ∈ T . Now, for all n, if n ∈ T then n+ ∈ T :

n+ = n ∪ {n} =⇒ ∀k∀m
[
k ∈ m ∈ n+ ⇐⇒ (k ∈ m ∈ n ∨ k ∈ m = n)

]
=⇒ ∀k∀m

[
k ∈ m ∈ n+ =⇒ k ∈ n ⊆ n+

]
=⇒ ∀k∀m

[
k ∈ m ∈ n+ =⇒ k ∈ n+

]
Therefore, the natural number n+ is also transitive and hence in T .

Consequently, we know that the subset T of ω is an inductive set. By the Induction Principle for
ω, T = ω.

Wherefore, all natural numbers are transitive.

Remarks (Big Check 1, 30/12/22): Seems ok. However, the presentation for the inductive step
could have been done much better. Instead of using only symbols, which makes the proof harder
to parse, writing that down in words will probably have made it easier to understand and a
significantly more enjoyable read.

s Self-Proof of Theorem 4G: ✓

Let the subset T of ω be as follows:

T = {n ∈ ω | ∀k(k ∈ n =⇒ k ∈ ω)}

Vacuously, ∅ ∈ T . For all n, if n ∈ T , then n+ ∈ T ; because for all k:

k ∈ n+ ⇐⇒ (k ∈ n ∨ k = n)

=⇒ k ∈ ω

Therefore, n+ ∈ T . So, T is an inductive set. By the Induction Principle for ω, T = ω as desired.
Which means that ω is indeed a transitive set — since for all k and n, k ∈ n ∈ ω implies k ∈ ω.

Remarks (Big Check 1, 30/12/22): Yeah the general arguments are alright. The only thing is,
again, that it would be better if more English was used over lines of symbols

2. ✓ Show that if a is a transitive set, then a+ is also a transitive set.

For all a, if a is a transitive set, then for all sets b and c;

c ∈ b ∈ a+ =⇒ c ∈ b ∈ a ∨ c ∈ b = a

=⇒ c ∈ a ⊆ a+

=⇒ c ∈ a+

Therefore, a+ is also a transitive set.

Remarks (Big Check 1, 30/12/22): Again, try to use more English over lines of symbols.

72



3.

(a) ✓ Show that if a is a transitive set, then Pa is also a transitive set.

(b) ✓ Show that if Pa is a transitive set, then a is also a transitive set.

(a) Assume a is a transitive set:

c ∈ b ∈ Pa =⇒ c ∈ b ⊆ a

=⇒ c ∈ a

=⇒ c ⊆ a by the assumption

=⇒ c ∈ Pa

Therefore, Pa is a transitive set.

(b) Conversely, now suppose Pa is a transitive set:

(d ∈ c ∈ b ∈ Pa =⇒ d ∈ c ∈ Pa) =⇒ (d ∈ c ∈ b ⊆ a =⇒ d ∈ c ⊆ a)

=⇒ (d ∈ c ∈ a =⇒ d ∈ a)

So, a is a transitive set.

Remarks (Big Check 1, 30/12/22): Again, more use of English over symbols would be good.

4. ✓ Show that if a is a transitive set, then
⋃
a is also a transitive set.

Assume a is a transitive set:

c ∈ b ∈
⋃
a =⇒ ∃u(c ∈ b ∈ u ∈ a)

=⇒ c ∈ b ∈ a

=⇒ c ∈
⋃
a

Thus, we see that
⋃
a is a transitive set indeed.

5. Assume that every member of A is a transitive set.

(a) ✓ Show that
⋃

A is a transitive set.

(b) ✓ Show that
⋂

A is a transitive set (assuming that A is nonempty).

(a)

c ∈ b ∈
⋃

A =⇒ ∃a(c ∈ b ∈ a ∈ A )

=⇒ ∃a(c ∈ a ∈ A)

=⇒ c ∈
⋃

A

By definition,
⋃

A is a transitive set.

(b)

c ∈ b ∈
⋂

A =⇒ ∀a(c ∈ b ∈ a ∈ A )

=⇒ ∀a(c ∈ a ∈ A )

=⇒ c ∈
⋂

A

Indeed, we have that
⋂

A is a transitive set (assuming that A is nonempty).
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6. ✓ Prove the converse to Theorem 4E: If
⋃

(a+) = a, then a is a transitive set.

⋃(
a+
)
= a⋃

(a ∪ {a}) = a(⋃
a
)
∪
(⋃

{a}
)
= a by Exercise 21 of Chapter 2(⋃

a
)
∪ a = a

Hence, by extensionality:

∀x
[
x ∈

(⋃
a
)
∪ a ⇐⇒ x ∈ a

]
⇐⇒ ∀x

(
⌊⌈∃y(x ∈ y ∈ a) ∨ x ∈ a⌋⌉ ⇐⇒ x ∈ a

)
=⇒ ∀x

(
⌊⌈∃y(x ∈ y ∈ a) ∨ x ∈ a⌋⌉ =⇒ x ∈ a

)
=⇒ ∀x

(
∃y(x ∈ y ∈ a) =⇒ x ∈ a

)
=⇒ ∀x

(
∀y¬(x ∈ y ∈ a) ∨ x ∈ a

)
=⇒ ∀x∀y

(
¬(x ∈ y ∈ a) ∨ x ∈ a

)
=⇒ ∀x∀y

(
x ∈ y ∈ a =⇒ x ∈ a

)
Wherefore, it should be clear that a is indeed a transitive set!
(Oh boi was that quite a few lines of elementary logic lol)

Remarks (Big Check 1, 30/12/22): There is an over reliance on symbols instead of English words
here once more. Especially for the part after “Hence, by extensionality:”, it was not a smooth
read. Also, the transition from ∀x

(
⌊⌈∃y(x ∈ y ∈ a) ∨ x ∈ a⌋⌉ =⇒ x ∈ a

)
to

∀x
(
∃y(x ∈ y ∈ a) =⇒ x ∈ a

)
was not really clear, rigorously speaking. (even though it makes

sense ‘intuitively’)
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1.3.3 Recursion On ω

7. ✓ Complete part 4 of the proof of the recursion theorem on ω.

Let S be the set on which h1 and h2 agree:

S = {n ∈ ω |h1(n) = h2(n)}.

Where both functions h1 : ω → A and h2 : ω → A are such that h1(0) = h2(0) = a, and for all
n ∈ ω, h1(n

+) = F (h1(n)) as well as h2(n
+) = F (h2(n)). So, ∅ ∈ S. Now, if n ∈ S, then

h1(n) = h2(n). Consequently, h1(n
+) = F (h1(n)) = F (h2(n)) = h2(n

+). Which also means
n+ ∈ S. By definition, S is an inductive subset of ω. As a result, by the Induction Principle on ω,
S = ω. Hence, we conclude that the functions are identical:
h1 = {⟨n, h1(n)⟩ |n ∈ ω} = {⟨n, h2(n)⟩ |n ∈ ω} = h2.

Self-Proof of Theorem 4H: ✓

By the Recursion Theorem on ω, there exists a (unique) function h : ω → N such that

1. h(0) = e

2. h(n+) = h(σ(n)) = S(h(n))

h is injective:

Let set T = {n ∈ ω | ∀k(h(n) = h(k) =⇒ n = k)}. In order for h(n) = e, either n = 0 or n ̸= 0.
Now, by condition (i) of Peano systems, e /∈ ranS. By Theorem 4C, for any natural n ̸= 0, there
exists another natural k with k+ = n. For such nonzero n, h(n) = h(k+) = h(σ(k)) = S(h(k)) ̸= e.
Thus, the only possibility for h(n) = e is n = 0. So, h(n) = h(k) = e implies n = k = 0. Which
means 0 ∈ T . If n ∈ T , then n+ ∈ T as seen in the following: First, notice that by Theorem 4D,
n+ ̸= 0. So, h(n+) ̸= e:

h
(
n+
)
= h(m) where m ̸= 0 since h(m) ̸= e

h
(
n+
)
= h

(
k+
)

by Theorem 4C, where k+ = m

h(σ(n)) = h(σ(k))

S(h(n)) = S(h(k))

h(n) = h(k) by condition (ii) of Peano systems

n = k by assumption

n+ = k+ = m

Hence, we see that n+ ∈ T whenever n ∈ T , as desired. By definition, this set T is now inductive.
Consequently, by the Induction Principle for ω, T = ω. i.e. ∀n∀k(h(n) = h(k) =⇒ n = k); h is
an injective function.

h is surjective:

Notice that ranh ⊆ N and h(0) = e ∈ ranh, by definition. If n ∈ ranh, then there exists k ∈ ω so
that n = h(k). Then, S(n) = S(h(k)) = h(σ(k)) ∈ ranh. So, ranh is closed under S. i.e. the
subset ranh of N contains e and is closed under S. By condition (iii) of Peano systems,
ranh = N . Which means that h is indeed surjective.

We can now conclude that; Wherefore, there is a bijective function h : ω → N in a way that
preserves the successor operation

h(σ(n)) = S(h(n))

and the zero element
h(0) = e ! :D

Q.E.D. ■
■ — refers to the part(s) I edited or added after reviewing my work, in order to improve it. *Note:
This was done before big check 1
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9. ✓ Let f be a function from B into B, and assume that A ⊆ B. We have two possible methods
for constructing the “closure1” C of A under f . First define C∗ to be the intersection of the closed
supersets of A:

C∗ =
⋂

{X |A ⊆ X ⊆ B ∧ fJXK ⊆ X} .

Alternatively, we could apply the recursion theorem to obtain the function h for which

h(0) = A

h
(
n+
)
= h(n) ∪ fJh(n)K.

Clearly, h(0) ⊆ h(1) ⊆ · · ·; define C∗ to be
⋃

ranh; in other words

C∗ =
⋃
i∈ω

h(i).

Show that C∗ = C∗. [Suggestion: To show that C∗ ⊆ C∗, show that fJC∗K ⊆ C∗. To show that
C∗ ⊆ C∗, use induction to show that h(n) ⊆ C∗.]

Proof:

□ C∗ ⊆ C∗

1. A ⊆ C∗ ⊆ B:

i. A ⊆ C∗

x ∈ A =⇒ (0 ∈ ω ∧ x ∈ h(0) = A)

=⇒ x ∈
⋃
i∈ω

h(i)

ii. C∗ ⊆ B

x ∈
⋃
i∈ω

h(i) ⇐⇒ ∃i(i ∈ ω ∧ x ∈ h(i) ⊆ B)

=⇒ x ∈ B

Thus, we know A ⊆ C∗ ⊆ B.

2. fJC∗K ⊆ C∗:

y ∈ fJC∗K ⇐⇒ ∃x

(
x ∈

⋃
i∈ω

h(i) ∧ ⟨x, y⟩ ∈ f

)
⇐⇒ ∃i∃x(i ∈ ω ∧ x ∈ h(i) ∧ ⟨x, y⟩ ∈ f)

=⇒ ∃i
[
i ∈ ω ∧ y ∈ h

(
i+
)]

by the construction of h

=⇒ y ∈ C∗

Now, it follows that

x ∈ C∗ ⇐⇒ x ∈
⋂

{X |A ⊆ X ⊆ B ∧ fJXK ⊆ X}

⇐⇒ ∀X [(A ⊆ X ⊆ B ∧ fJXK ⊆ X) =⇒ x ∈ X]

=⇒ x ∈ C∗ as A ⊆ C∗ ⊆ B and fJC∗K ⊆ C∗

Which means, we successfully shown that C∗ ⊆ C∗. We need only show C∗ ⊆ C∗ after
this.

□ C∗ ⊆ C∗

Let the set S = {i ∈ ω |h(i) ⊆ C∗},
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1. 0 ∈ S:

x ∈ h(0) =⇒ ∀X(A ⊆ X =⇒ x ∈ X)

=⇒ ∀X [(A ⊆ X ⊆ B ∧ fJXK ⊆ X) =⇒ x ∈ X]

=⇒ x ∈ C∗

As h(0) ⊆ C∗, accordingly 0 ∈ S.

2. If i ∈ S, then i+ ∈ S:

We first prove a small result

h(i) ⊆ C∗ =⇒ ∀X
(
(A ⊆ X ⊆ B ∧ fJXK ⊆ X) =⇒ ⌊⌈h(i) ⊆ X⌋⌉

)
=⇒ ∀X

(
(A ⊆ X ⊆ B ∧ fJXK ⊆ X) =⇒ ⌊⌈fJh(i)K ⊆ X⌋⌉

)
=⇒ fJh(i)K ⊆ C∗

As a result, the following holds true

y ∈ h
(
i+
)

⇐⇒ y ∈ h(i) ∪ fJh(i)K
⇐⇒ y ∈ h(i) ∨ y ∈ fJh(i)K
=⇒ y ∈ C∗ since i ∈ S and fJh(i)K ⊆ C∗

Therefore, the subset S of ω is inductive, by definition. By the Induction Principle for
ω, S = ω. Consequently,

y ∈ C∗ ⇐⇒ ∃i⌊⌈i ∈ ω ∧ y ∈ h(i)⌋⌉
=⇒ y ∈ C∗

Thence, C∗ ⊆ C∗. Wherefore, since C∗ ⊆ C∗ and C∗ ⊆ C∗, so C∗ = C∗ easily follows.

Remarks (Big Check 1, 30/12/22): Yeah it looks okay. Its just that, as usual, it’ll be good if
the explanations were done moreso in English than symbols.

1Wait, what even is the closure? The closure C of A under f is the smallest subset C of B so that A ⊆ C and C
is closed under f . L.A. e.g.: Let B be a vector space, A be a subset of B. Then, the closure C of A under + and ·
would be what we call spanA, which is a superset of A and a subset of B.
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10. ✓ In Exercise 9, assume that B is the set of real numbers, f(x) = x2, and A is the closed
interval

[
1
2 , 1
]
. What is the set called C∗ and C∗?

The set C∗ and C∗ are (0, 1].

11. ✓ In Exercise 9, assume that B is the set of real numbers, f(x) = x− 1, and A = {0}. What
is the set called C∗ and C∗?

The set C∗ and C∗ are the set of negative integers including 0, i.e. Z−
0 .

Self-Exercise 5: Let the sets I, A and B be so that A ⊆ B, the function f :
∏
i∈I

B → B. We define

the “I product closure” C of A under f as follows:

C∗ =
⋂{

X

∣∣∣∣∣A ⊆ X ⊆ B ∧ f

t∏
i∈I

X

|

⊆ X

}

Alternatively, apply the recursion theorem to obtain the function h : ω → PB with

h(0) = A

h
(
n+
)
= h(n) ∪ f

t∏
i∈I

h(n)

|

So,

C∗ =
⋃
k∈ω

h(k)

Prove or disprove C∗ = C∗.
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Answer 1: Counterexample with Proof by Contradiction: ×

Let I = ω, A = {0, 1}, B = ω, and

f(x) =

{
1001 if x = F

2 · ⌊⌈x(1) + x(2)⌋⌉ otherwise

where F = {⟨n, 2n⟩ |n ∈ ω} ∈
∏
i∈ω

ω

Assume C∗ = C∗. It should be clear that from its definition, C∗ ⊆ X, for all X such that
{0, 1} ⊆ X ⊆ ω and fJ

∏
i∈ωXK. As such, fJ

∏
i∈ω C

∗K ⊆ C∗:

y ∈ f

t∏
i∈ω

C∗

|

=⇒ ∀X

[(
{0, 1} ⊆ X ⊆ ω ∧ f

t∏
i∈ω

X

|

⊆ X

)
=⇒ y ∈ f

t∏
i∈ω

X

|]

=⇒ ∀X

[(
{0, 1} ⊆ X ⊆ ω ∧ f

t∏
i∈ω

X

|

⊆ X

)
=⇒ y ∈ X

]
=⇒ y ∈ C∗

Accordingly, by our assumption, fJ
∏

i∈ω C∗K ⊆ C∗ also.

Let S =
{
n ∈ ω

∣∣∀e(e ∈ h(n) =⇒ ⌊⌈e = 1 ∨ ∃m(m ∈ ω ∧ e = 2m)⌋⌉
)}

. In English, S is the set of
natural numbers n such that h(n) contains only 1 and/or even (natural) numbers.

0 ∈ S immediately by definition, because h(0) = {0, 1} contains solely 1 and the even number 0. If
n ∈ S, n+ ∈ S too: e ∈ h(n+) implies that e ∈ h(n) or e ∈ f

q∏
i∈I h(n)

y
. In the first case, that

e ∈ h(n) easily satisfies the desired property as n ∈ S. As for the second case,

e ∈ f

t∏
i∈I

h(n)

|

=⇒ ∃g

(
g ∈

∏
i∈ω

h(n) ∧ f(g) = e

)

=⇒ ∃g

(
g : ω →

⋃
i∈ω

h(n) ∧ f(g) = e

)
=⇒ ∃g(g : ω → h(n) ∧ 2 · ⌊⌈g(1) + g(2)⌋⌉ = e)

=⇒ ∃m(m ∈ ω ∧ e = 2m) since h(n) ⊆ ω, thus g(1) + g(2) ∈ ω

=⇒ ⌊⌈e = 1 ∨ ∃m(m ∈ ω ∧ e = 2m)⌋⌉

Therefore, n+ ∈ S as the desired property holds true in both above cases. By definition, S is
inductive. Using the Induction Principle for ω, S = ω. Which also means that C∗ is the set
containing only 1 and even natural numbers.

We know ranF contains only even naturals as well (by def.). Hence, F ∈
∏

i∈ω C∗. However,
f(F ) = 1001 /∈ C∗, because 1001 is not even. Consequently, fJ

∏
i∈ω C∗K ⊈ C∗. This contradicts

our previous claim, derived from our assumption, that fJ
∏

i∈ω C∗K ⊆ C∗. Wherefore, it must be
that C∗ ̸= C∗.

Remarks: We know that C∗ is a set containing some even numbers. However, we have not shown
the converse; that all even numbers are in C∗. Thus, we cannot conclude F ∈

∏
i∈ω C∗ yet.

Proving this would be rather troublesome. So, in the second edition we tweak the example slightly:
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✓✓ Second Edition: Let I = ω, A = {0, 2}, B = ω, and

f(x) =

{
1001 if x = F

x(1) + x(2) otherwise

where F = {⟨n, 2n⟩ |n ∈ ω}.
Assume C∗ = C∗. It should be clear that from its definition, C∗ ⊆ X, for all X such that
{0, 1} ⊆ X ⊆ ω and fJ

∏
i∈ωXK ⊆ X. As such, fJ

∏
i∈ω C

∗K ⊆ C∗:

y ∈ f

t∏
i∈ω

C∗

|

=⇒ ∀X

[(
{0, 1} ⊆ X ⊆ ω ∧ f

t∏
i∈ω

X

|

⊆ X

)
=⇒ y ∈ f

t∏
i∈ω

X

|]

=⇒ ∀X

[(
{0, 1} ⊆ X ⊆ ω ∧ f

t∏
i∈ω

X

|

⊆ X

)
=⇒ y ∈ X

]
=⇒ y ∈ C∗

Accordingly, by our assumption, fJ
∏

i∈ω C∗K ⊆ C∗ also.

Let the set S = {n ∈ ω | ∀e⌊⌈e ∈ h(n) =⇒ ∃m(m ∈ ω ∧ e = 2 ·m)⌋⌉}. In English, S is the set of
natural numbers n such that h(n) contains only even (natural) numbers.

0 ∈ S immediately, because h(0) = {0, 2} indeed contains only the even numbers 0 and 2. If
n ∈ S, then n+ ∈ S too: e ∈ h(n+) implies that e ∈ h(n) or e ∈ fJ

∏
i∈ω h(n)K. In the first case,

e ∈ h(n) easily satisfies the desired property as n ∈ S. As for the second case:

e ∈ f

t∏
i∈ω

h(n)

|

=⇒ ∃g

(
g ∈

∏
i∈ω

h(n) ∧ f(g) = e

)

=⇒ ∃g

(
g : ω →

⋃
i∈ω

h(n) ∧ f(g) = e

)
=⇒ ∃g (g : ω → h(n) ∧ g(1) + g(2) = e)

=⇒ ∃g∃m1∃m2

(
g : ω→h(n) ∧ m1∈ω ∧ m2∈ω

∧ g(1)=2·m1 ∧ g(2)=2·m2

∧ 2·m1+2·m2=e

)
since n ∈ S, g(1) and g(2)

are even numbers

=⇒ ∃m1∃m2 (2 · (m1 +m2) = e)

=⇒ ∃m(m ∈ ω ∧ e = 2 ·m)

Therefore, n+ ∈ S as the desired property holds true in both cases. By definition, S is inductive.
Using the Induction Principle for ω, S = ω. Which also means that C∗ is the set containing only
even numbers.

Now for the converse. Let the set S′ = {k ∈ ω | 2 · k ∈ C∗}. By definition, 0 ∈ ω as
2 · 0 = 0 ∈ {0, 2} = h(0) ⊆ C∗. Whenever k ∈ ω, there exists some n ∈ ω so that 2 · k ∈ h(n). As
such, there also exists the function G ∈

∏
i∈ω h(n) (by applying a subset axiom to ω × h(n)) with

G = {⟨x, y⟩ | (x = 1 =⇒ y = 2 · k) ∧ (x ∈ ω \ {1} =⇒ y = 2)}

because 2 ∈ h(n) for all n ∈ ω. We shall do a quick proof of this small fact. Let the set
S′′ = {n ∈ ω | 2 ∈ h(n)}. Then, 2 ∈ {0, 2} = h(0) by definition, meaning 0 ∈ S′′. If n ∈ S′′,
n+ ∈ S′′ since h(n) ⊆ h(n+) = h(n) ∪ fJ

∏
i∈ω h(n). Thus, S

′′ is an inductive subset of ω. By the
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Induction Principle for ω, S′′ = ω. Returning to the previous part,

f(G) ∈ f

t∏
i∈ω

h(n)

|

=⇒ f(G) ∈ h
(
n+
)

=⇒ G(1) +G(2) ∈ C∗

=⇒ 2 · k + 2 ∈ C∗

=⇒ 2 · (k + 1) ∈ C∗

=⇒ 2 ·
(
k+
)
∈ C∗

Consequently, k+ ∈ S′; S′ is an inductive subset of ω. Using the Induction Principle for ω,
S′ = ω. Which means that S contains all even (natural) numbers. Combined with what we
previously proven, that C∗ is the set containing only even numbers, we conclude that C∗ is the set
of all even numbers.

We know ranF contains only even naturals as well (by def.). Hence, F ∈
∏

i∈ω C∗. However,
f(F ) = 1001 /∈ C∗, because 1001 is not even. Consequently, fJ

∏
i∈ω C∗K ⊈ C∗. This contradicts

our previous claim, derived from our assumption, that fJ
∏

i∈ω C∗K ⊆ C∗. Wherefore, it must be
that C∗ ̸= C∗.

Remarks (Big Check 1, 30/12/22): Once again, the general idea seems correct, however the
presentation and phrasing here is suboptimal. It could be significantly clearer and easier to read
with the aid of more English. Hence, I give this a ✓
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Answer 2: Counterexample + Direct Proof: ×

Let I = ω, A = {0, 1}, B = ω, and

f(x) =

{
1001 if x = F

2 · ⌊⌈x(1) + x(2)⌋⌉ otherwise

where F = {⟨n, 2n⟩ |n ∈ ω} ∈
∏
i∈ω

ω.

Also let the set T = {n ∈ ω |n ∈ C∗}. 0, 1 ∈ T since for all X; {0, 1} ⊆ X implies 0, 1 ∈ X. If
n ∈ T , we shall see that n+ ∈ T as well. For all X such that {0, 1} ⊆ X ⊆ ω, there exists
G ∈

∏
i∈ωX with

G(1) = n

G(2) = 1

because 1, n ∈ T . Consequently, for all X,(
{0, 1} ⊆ X ⊆ ω ∧ f

t∏
i∈ω

X

|

⊆ X

)
=⇒ ∀g

[
g ∈

∏
i∈ω

X =⇒ f(g) ∈ X

]
=⇒ f(G) = 2(n+ 1) = 2(n+) ∈ X

Which means 2(n+) ∈ C∗. Hence, n+ ∈ T and T is inductive. By the Induction Principle for ω,
T = ω. In other words, C∗ contains all even numbers. Now, for all X so that {0, 1} ⊆ X ⊆ ω,
F ∈

∏
i∈ωX. As a result, by the same logic as above, 1001 ∈ C∗.

Let S =
{
n ∈ ω

∣∣ ∀e(e ∈ h(n) =⇒ ⌊⌈e = 1 ∨ ∃m(m ∈ ω ∧ e = 2m)⌋⌉
)}

. In English, S is the set of
natural numbers n such that h(n) contains only 1 and/or even (natural) numbers.

0 ∈ S immediately by definition, because h(0) = {0, 1} contains solely 1 and the even number 0. If
n ∈ S, n+ ∈ S too: e ∈ h(n+) implies that e ∈ h(n) or e ∈ f

q∏
i∈I h(n)

y
. In the first case, that

e ∈ h(n) easily satisfies the desired property as n ∈ S. As for the second case,

e ∈ f

t∏
i∈I

h(n)

|

=⇒ ∃g

(
g ∈

∏
i∈ω

h(n) ∧ f(g) = e

)

=⇒ ∃g

(
g : ω →

⋃
i∈ω

h(n) ∧ f(g) = e

)
=⇒ ∃g(g : ω → h(n) ∧ 2 · ⌊⌈g(1) + g(2)⌋⌉ = e)

=⇒ ∃m(m ∈ ω ∧ e = 2m) since h(n) ⊆ ω, thus g(1) + g(2) ∈ ω

=⇒ ⌊⌈e = 1 ∨ ∃m(m ∈ ω ∧ e = 2m)⌋⌉

Therefore, n+ ∈ S as the desired property holds true in both above cases. By definition, S is
inductive. Using the Induction Principle for ω, S = ω. Which also means that C∗ is the set
containing only 1 and even natural numbers.

We know ranF contains only even naturals as well (by def.). Hence, F ∈
∏

i∈ω C∗. However,
f(F ) = 1001 /∈ C∗, because 1001 is not even. Consequently, fJ

∏
i∈ω C∗K ⊈ C∗.

Wherefore, since 1001 ∈ C∗ but 1001 /∈ C∗, C
∗ ̸= C∗ is certain.

Remarks:

1. It should be quite clear that C∗ does not contain all natural numbers.

2. If we use the set T as defined above, 2 ·(n+) ∈ C∗ does not necessarily mean n+ ∈ T .

3. Similarly, even if we change the set T to be {n ∈ ω | 2 · n ∈ C∗}: our induction hypothesis
that n ∈ T will now mean 2 · n ∈ C∗. So, if we follow the above procedure, we would only
arrive at f(G) = 2 · (2 · n+ 1). Which doesn’t allow us to complete our inductive proof.
Thus, we shall tweak the example slightly in the second edition:
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✓✓ Second Edition: Let I = ω, A = {0, 2}, B = ω, and

f(x) =

{
1001 if x = F

x(1) + x(2) otherwise

where F = {⟨n, 2n⟩ |n ∈ ω}.
Also let the set T = {n ∈ ω | 2 · n ∈ C∗}. 0, 1 ∈ T since for all X; {0, 2} ⊆ X implies 2 · 0 = 0 ∈ X
and 2 · 1 = 2 ∈ X. If n ∈ T , we shall see that n+ ∈ T as well. For all X such that {0, 1} ⊆ X ⊆ ω,
there exists a G ∈

∏
i∈ωX with

G = {⟨x, y⟩ | (x = 1 =⇒ y = 2 · n) ∧ (x ∈ ω \ {1} =⇒ y = 2)}

because 1, n ∈ T . Consequently, for all X,(
{0, 2} ⊆ X ⊆ ω ∧ f

t∏
i∈ω

X

|

⊆ X

)
=⇒ ∀g

[
g ∈

∏
i∈ω

X =⇒ f(g) ∈ X

]
=⇒ f(G) = 2 · n+ 2 = 2 · n+ ∈ X

Which means that 2 · n+ ∈ C∗. Hence, n+ ∈ T and T is an inductive subset of ω. By the
Induction Principle for ω, T = ω. In other words, C∗ contains all even numbers. Now, for all X so
that {0, 1} ⊆ X ⊆ ω and fJ

∏
i∈ωXK ⊆ X, F ∈

∏
i∈ωX. As a result, by the same logic as above,

1001 ∈ C∗.

Let the set S = {n ∈ ω | ∀e⌊⌈e ∈ h(n) =⇒ ∃m(m ∈ ω ∧ e = 2 ·m)⌋⌉}. In English, S is the set of
natural numbers n such that h(n) contains only even (natural) numbers.

0 ∈ S immediately, because h(0) = {0, 2} indeed contains only the even numbers 0 and 2. If
n ∈ S, then n∗ ∈ S too: e ∈ h(n+) implies that e ∈ h(n) or e ∈ fJ

∏
i∈ω h(n)K. In the first case,

e ∈ h(n) easily satisfies the desired property as n ∈ S. As for the second case:

e ∈ f

t∏
i∈ω

h(n)

|

=⇒ ∃g

(
g ∈

∏
i∈ω

h(n) ∧ f(g) = e

)

=⇒ ∃g

(
g : ω →

⋃
i∈ω

h(n) ∧ f(g) = e

)
=⇒ ∃g (g : ω → h(n) ∧ g(1) + g(2) = e)

=⇒ ∃g∃m1∃m2

(
g : ω→h(n) ∧ m1∈ω ∧ m2∈ω

∧ g(1)=2·m1 ∧ g(2)=2·m2

∧ 2·m1+2·m2=e

)
since n ∈ S, g(1) and g(2)

are even numbers

=⇒ ∃m1∃m2 (2 · (m1 +m2) = e)

=⇒ ∃m(m ∈ ω ∧ e = 2 ·m)

Therefore, n+ ∈ S as the desired property holds true in both cases. By definition, S is inductive.
Using the Induction Principle for ω, S = ω. Which also means that C∗ is the set containing only
even numbers.

Now for the converse. Let the set S′ = {k ∈ ω | 2 · k ∈ C∗}. By definition, 0 ∈ ω as
2 · 0 = 0 ∈ {0, 2} = h(0) ⊆ C∗. Whenever k ∈ S′, there exists some n ∈ ω so that 2 · k ∈ h(n). As
such, there also exists the function G ∈

∏
i∈ω h(n) (by applying a subset axiom to ω × h(n)) with

G = {⟨x, y⟩ | (x = 1 =⇒ y = 2 · k) ∧ (x ∈ ω \ {1} =⇒ y = 2)}

because 2 ∈ h(n) for all n ∈ ω. We shall do a quick proof of this small fact. Let the set
S′′ = {n ∈ ω | 2 ∈ h(n)}. Then, 2 ∈ {0, 2} = h(0) by definition, meaning 0 ∈ S′′. If n ∈ S′′,
n+ ∈ S′′ since h(n) ⊆ h(n+) = h(n) ∪ fJ

∏
i∈ω h(n). Thus, S

′′ is an inductive subset of ω. By the
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Induction Principle for ω, S′′ = ω. Returning to the previous part,

f(G) ∈ f

t∏
i∈ω

h(n)

|

=⇒ f(G) ∈ h
(
n+
)

=⇒ G(1) +G(2) ∈ C∗

=⇒ 2 · k + 2 ∈ C∗

=⇒ 2 · (k + 1) ∈ C∗

=⇒ 2 ·
(
k+
)
∈ C∗

Consequently, k+ ∈ S′; S′ is an inductive subset of ω. Using the Induction Principle for ω,
S′ = ω. Which means that C∗ contains all even (natural) numbers. Combined with what we
previously proven, that C∗ is the set containing only even numbers, we conclude that C∗ is the set
of all even numbers. As 1001 is not even, 1001 /∈ C∗.

Wherefore, since 1001 ∈ C∗ but 1001 /∈ C∗, C
∗ ̸= C∗ is certain.

Remarks (Big Check 1, 31/12/22): Same thing as before.
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✓ Self-Exercise 5.1: Find the condition(s) such that C∗ = C∗ is true iff those condition(s) are
true.

C∗ = C∗ iff fJ
∏

i∈ω C∗K ⊆ C∗. Proof:

( =⇒ ) It should be clear that from its definition, C∗ ⊆ X, for all X such that {0, 1} ⊆ X ⊆ ω and
fJ
∏

i∈ωXK. As such, fJ
∏

i∈ω C
∗K ⊆ C∗:

y ∈ f

t∏
i∈ω

C∗

|

=⇒ ∀X

[(
{0, 1} ⊆ X ⊆ ω ∧ f

t∏
i∈ω

X

|

⊆ X

)
=⇒ y ∈ f

t∏
i∈ω

X

|]

=⇒ ∀X

[(
{0, 1} ⊆ X ⊆ ω ∧ f

t∏
i∈ω

X

|

⊆ X

)
=⇒ y ∈ X

]
=⇒ y ∈ C∗

Assume C∗ = C∗ is true. Consequently, fJ
∏

i∈ω C∗K ⊆ C∗ should hold.

( ⇐= ) We know that A ⊆ C∗ ⊆ B:

◦ A ⊆ C∗:

x ∈ A =⇒ (0 ∈ ω ∧ x ∈ h(0))

=⇒ ∃k(k ∈ ω ∧ x ∈ h(k))

=⇒ x ∈ C∗

◦ C∗ ⊆ B:

x ∈ C∗ ⇐⇒ ∃k(k ∈ ω ∧ x ∈ h(k) ∈ PB)

=⇒ x ∈ B

Thus, we conclude that A ⊆ C∗ ⊆ B, as desired.

Suppose that fJ
∏

i∈ω C∗K ⊆ C∗ is true. As a result,

x ∈ C∗ ⇐⇒ x ∈
⋂{

X

∣∣∣∣∣A ⊆ X ⊆ B ∧ f

t∏
i∈I

X

|

⊆ X

}

⇐⇒ ∀X

[(
A ⊆ X ⊆ B ∧ f

t∏
i∈I

X

|

⊆ X

)
=⇒ x ∈ X

]

=⇒ x ∈ C∗ as A ⊆ C∗ ⊆ B and f

t∏
i∈ω

C∗

|

⊆ C∗

Hence, C∗ ⊆ C∗. Now let the set S = {k ∈ ω |h(k) ⊆ C∗};

x ∈ h(0) =⇒ ∀X(A ⊆ X =⇒ x ∈ X)

=⇒ ∀X

[(
A ⊆ X ⊆ B ∧ f

t∏
i∈ω

X

|

⊆ X

)
=⇒ x ∈ X

]
=⇒ x ∈ C∗

As h(0) ⊆ C∗, 0 ∈ S.

If k ∈ S, k+ ∈ S:
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We first prove fJ
∏

i∈I h(i)K ⊆ C∗;

h(k) ⊆ C∗ =⇒ ∀X

((
A ⊆ X ⊆ B ∧ f

t∏
i∈I

X

|

⊆ X

)
=⇒ ⌊⌈h(k) ⊆ X⌋⌉

)

=⇒ ∀X

((
A ⊆ X ⊆ B ∧ f

t∏
i∈I

X

|

⊆ X

)
=⇒

[
f

t∏
i∈I

h(k)

|

⊆ X

])

=⇒ f

t∏
i∈I

h(k)

|

⊆ C∗

Therefore, the following is true

y ∈ h
(
k+
)

⇐⇒ y ∈ h(k) ∪ f

t∏
i∈I

h(k)

|

⇐⇒ y ∈ h(i) ∨ y ∈ f

t∏
i∈I

h(k)

|

=⇒ y ∈ C∗ since k ∈ S and f

t∏
i∈I

h(k)

|

⊆ C∗

Accordingly, the set S is inductive, by definition. By applying the Induction Principle for ω,
S = ω. So, C∗ ⊆ C∗:

y ∈ C∗ ⇐⇒ ∃k⌊⌈k ∈ ω ∧ y ∈ h(k)⌋⌉
=⇒ y ∈ C∗

Thence, we can conclude that; since C∗ ⊆ C∗ and C∗ ⊆ C∗, C∗ = C∗.

Wherefore, C∗ = C∗ iff fJ
∏

i∈ω C∗K ⊆ C∗ as we claimed.

Now, there are various ‘equivalent forms’ of fJ
∏

i∈I C∗K ⊆ C∗. To be more accurate,
fJ
∏

i∈I C∗K ⊆ C∗ holds iff at least one of the following does

1. C∗ ̸= ∅ and A ̸= ∅, but f

s∏
i∈I

C∗

{
= ∅, which is possible when AC is not assumed.

2. f

s∏
i∈I

C∗

{
⊆ A.

i. C∗ = A = ∅.

3. There exists a natural m so that f

s∏
i∈I

C∗

{
⊆ f

s∏
i∈I

h(m)

{
.

a. I = ∅.

b. I is finite.

c. There exists a natural m such that C∗ = h(m).

(Don’t really feel like typing the proof of this out right now lol.)

Remarks (Big Check 1, 31/12/22): Note that we are trying to prove the general case here so
{0, 1} should be replaced with A and ω with I or B (depending on where ω is). I think that was a
careless mistake where I got mixed up with the previous parts. Other than that error, the main
issue would again be that the presentation could be considerably better and improved upon.
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1.3.4 Arithmetic

Self-Proof of Theorem 4I: ✓✓
(A1)

m+ 0 = Am(0) = m

(A2)
m+ n+ = Am

(
n+
)
= Am(n)+ = (m+ n)+

Self-Proof of Theorem 4J: ✓✓
(M1)

m · 0 =Mm(0) = 0

(M2)
m · n+ =Mm

(
n+
)
=Mm(n) +m = m · n+m

Self-Proof of Theorem 4K: ✓✓

(1) ✓✓ Let the set S1 = {p ∈ ω | ∀m∀n⌊⌈(m ∈ ω ∧ n ∈ ω) =⇒ m+ (n+ p) = (m+ n) + p⌋⌉}.
When p = 0, m+ (n+ 0) = m+ n = (m+ n) + 0 by (A1), meaning 0 ∈ S1. If p ∈ S1,
p+ ∈ S1:

m+
(
n+ p+

)
= m+ (n+ p)+ (A2)

= ⌊⌈m+ (n+ p)⌋⌉+ (A2)

= ⌊⌈(m+ n) + p⌋⌉+ since p ∈ S1

= (m+ n) + p+ (A2)

Thus, S1 is an inductive subset of ω and by the Induction Principle for ω, S1 = ω. Which
means that for all m,n, p ∈ ω, m+ (n+ p) = (m+ n) + p.

(2) ✓✓ Let the set S2 = {n ∈ ω | ∀m(m ∈ ω =⇒ m+ n = n+m)} and the set
T2 = {m ∈ ω |m+ 0 = 0 +m}. Immediately, 0 + 0 = 0 + 0 and 0 ∈ T2. If m ∈ T2,

0 +m+ = (0 +m)+ (A2)

= (m+ 0)+ since m ∈ T2

= m+ (A1)

= m+ + 0 (A1)

Consequently, m+ ∈ T2. By the Induction Principle for ω, T2 = ω. i.e. m+ 0 = 0+m for all
m ∈ ω; so 0 ∈ S2. Now assume n ∈ S2; letting the set T ′

2 = {m ∈ ω |m+ n+ = n+ +m}:

0 + n+ = (0 + n)+ (A2)

= (n+ 0)+ as n ∈ S2

= n+ (A1)

= n+ + 0 (A1)

Accordingly, 0 ∈ T ′
2. Whenever m ∈ T ′

2,

m+ + n+ =
(
m+ + n

)+
(A2)

= (n+m+)+ because n ∈ S2

=
[
(n+m)

+
]+

(A2)

=
[
(m+ n)

+
]+

since n ∈ S2

=
(
m+ n+

)+
(A2)

=
(
n+ +m

)+
as m ∈ T ′

2

= n+ +m+ (A2)

87



As a result, m+ ∈ T ′
2. By the Induction Principle for ω, T ′

2 = ω, and for all m ∈ ω,
m+ n+ = n+ +m. Hence, n+ ∈ S2 follows and by the Induction Principle for ω, S2 = ω.
We have successfully proven that for all n,m ∈ ω; m+ n = m+ n.

(3) ✓✓ Let the set S3 = {p ∈ ω | ∀m∀n⌊⌈m,n ∈ ω =⇒ m · (n+ p) = (m · n) + (m · p)⌋⌉}. When
p = 0,

m · (n+ 0) = m · n (A1)

= m · n+ 0 (A1)

= m · n+m · 0 (M1)

If p ∈ S3;

m · (n+ p+) = m · (n+ p)+ (A2)

= ⌊⌈m · (n+ p)⌋⌉+m (M2)

= (m · n+m · p) +m since p ∈ S3

= m · n+ (m · p+m) (1)

= m · n+m · p+ (M2)

Therefore, we see that p+ ∈ S3 indeed. S3 is now an inductive subset of ω. By the Induction
Principle for ω, S3 = ω. Thence, for all m,n, p ∈ ω, m · (n+ p) = n · n+m · p.

(4) ✓✓ Let the set S4 = {p ∈ ω | ∀m∀n⌊⌈m,n ∈ ω =⇒ m · (n · p) = (m · n) · p⌋⌉}. Since
m · (n · 0) = m · 0 = 0 = (m · n) · 0 by (M1), 0 ∈ S4. Whenever p ∈ S4, p

+ ∈ S4:

m ·
(
n · p+

)
= m · ⌊⌈(n · p) + n⌋⌉ (M2)

= m · (n · p) +m · n (3)

= (m · n) · p+m · n as p ∈ S4

= (m · n) · p+ (M2)

Therefore, we see that p+ ∈ S4 indeed. S4 is now an inductive subset of ω. By the Induction
Principle for ω, S4 = ω. In other words: For all m,n, p ∈ ω; m · (n · p) = (m · n) · p.

(5) ✓✓ Let the set S5 = {n ∈ ω | ∀m(m ∈ ω =⇒ m · n = n ·m)} and the set
T5 = {m ∈ ω |m · 0 = 0 ·m}. We see that 0 · 0 = 0 · 0, so 0 ∈ T5. When m ∈ T5,

0 ·m+ = (0 ·m) + 0 (M2)

= (m · 0) + 0 since m ∈ T5

= 0 + 0 (M1)

= 0 (A1)

= m+ · 0 (M1)

Thus, m+ ∈ T5; i.e. T5 is an inductive subset of ω. By the Induction Principle for ω,
T5 = ω. In other words, for all m ∈ ω, m · 0 = 0 ·m. Accordingly, 0 ∈ S5.
If n ∈ S5, we shall see that n+ ∈ S5 as well: Let the set T ′

5 = {m ∈ ω |m · n+ = n+ ·m}.
Notice that

0 · n+ = 0 · n+ 0 (M2)

= n · 0 + 0 as n ∈ S5

= 0 + 0 (M1)

= 0 (A1)

= n+ · 0 (M1)
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As a result, 0 ∈ T ′
5. Whenever m ∈ T ′

5,

m+ · n+ = m+ · n+m (M2)

= n ·m+ +m because n ∈ S5

= (n ·m+ n) +m (M2)

= (m · n+ n) +m because n ∈ S5

= m · n+ (n+m) (1)

= m · n+ (m+ n) (2)

= (m · n+m) + n (1)

= m · n+ + n (M2)

= n+ ·m+ n since m ∈ T ′
5

= n+ ·m+ (M2)

Consequently, m+ ∈ T ′
5 and T ′

5 is an inductive subset of ω. By the Induction Principle for ω,
T ′
5 = ω. i.e. For all m ∈ ω, m · n+ = n+ ·m. Wherefore, n+ ∈ S5 and S5 is an inductive

subset of ω. Once more, by the Induction Principle for ω, S′
5 = ω; For all m,n ∈ ω,

m · n = n ·m.
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Self-Exercise 6 — Generalising ‘Arithmetical Functions’: Prove that for all i ∈ ω, there exists a
unique function Gi : ω → ωω so that

[G0(m)](n) = Am(n) (1)

There exists some c ∈ ω such that [Gi(m)](c) = m for all m ∈ ω (2)

If there exists some j ∈ ω with i = j+, then:

There exists some c′ ∈ ω for all m ∈ ω so
[
Gj+(m)

]
(0) = c′ and [Gj(m)] (c′) = m (3)[

Gj+(m)
] (
n+
)
= [Gj(m)]

( [
Gj+(m)

]
(n)
)

(4)

We call functions mapping from ω to ωω that satisfy conditions (2)-(4) as ‘Natural Arithmetical
unary Functions’, or NAU-functions for short. (Yeah... coming up with names isn’t my strong suit)

Proof: ✓

Existance of Gi for all i ∈ ω

Let the set S = {k ∈ ω |Gk exists}.

0 ∈ S:

We know [G0(m)](n) = Am(n) by definition, and [G0(m)](0) = Am(0) = m; meaning conditions
(1) and (2) is satisfied. By Theorem 4D, 0 is not the successor of any natural number, so
conditions (3) and (4) are not necessary to check (since the conditional statement above
implicating them is immediately true already). By the construction of Am(n) (via the Recursion
Theorem on ω), we know that for all m ∈ ω, Am is a function mapping from ω to ω, and thus
indeed an element of ωω. G0 is also a function: Let m1 = m2 ∈ ω and the set
T = {n ∈ ω |Am1(n) = Am2(n)}. Since Am1(0) = m1 = m2 = Am2(0), 0 ∈ T . When n ∈ T ,

Am1

(
n+
)
= Am1(n)

+

= Am2
(n)+ as n ∈ T

= Am2

(
n+
)

Which means that n+ ∈ T and the set T is an inductive subset of ω. By the Induction Principle
for ω, T = ω. As Am1

(n) = Am2
(n) for all n in their common domain of

domAm1
= domAm2

= ω, Am1
= Am2

. Thus, G0 is indeed a function; and 0 ∈ S holds true.

k ∈ S implies k+ ∈ S:

If k ∈ S, then we will see that k+ ∈ S must be true too: Notice that by our assumption that
k ∈ S, for all m ∈ ω there indeed exists a function mapping from ω → ω: namely Gk(m) ∈ ωω;
and there is also some c ∈ ω (so that [Gk(m)](c) = m for all m ∈ ω). Hence all conditions for
applying the Recursion Theorem on ω are satisfied. (For all m ∈ ω) There now exists a (unique)
function hm : ω → ω where

hm(0) = c

hm
(
n+
)
= [Gk(m)]

(
hm(n)

)
We claim that hm is our desired Gk+(m). Clearly, conditions (3) and (4) are satisfied by
definition. Condition (2) is also satisfied as

hm(1) = [Gk(m)]
(
hm(0)

)
= [Gk(m)]

(
c
)

= m

Thence, hm is the Gk+(m) we want indeed as conditions (2)-(4) are all satisfied. Lastly, we need
to check that Gk+ := {⟨m,hm⟩ |m ∈ ω} is a function. For all m1 = m2 ∈ ω, hm1 = hm2 because
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from the Recursion Theorem on ω we know such a function is unique. Hence,
Gk+(m1) = Gk+(m2). Accordingly, Gk+ is a function.

Alternatively, we can give another proof that Gk+ is a function, by induction. Let the set
T ′ = {n ∈ ω |hm1 (n) = hm2 (n)}. By definition, hm1 (0) = c = hm2 (n). Whenever n ∈ T ′, n+ ∈ T ′ is also true:

hm1

(
n+

)
= [Gk(m1)]

(
hm1 (n)

)
= [Gk(m2)]

(
hm2 (n)

)
since n ∈ T , and Gk is a function as k ∈ S1

= hm2

(
n+

)
As a result, T ′ is an inductive subset of ω and T ′ = ω by the Induction Principle for ω. So, since hm1 (n) = hm2 (n)

for all n in their common domain of ω = domhm1 = domhm2 , thus hm1 = hm2 . Accordingly,

Gk+ (m1) = Gk+ (m2) and Gk+ is a function.

Which means that k+ ∈ S and S is an inductive subset of ω. By the Induction Principle for ω,
S = ω. Therefore, for all i ∈ ω, such Gi : ω → ωω (as described in the question) exists.

Uniqueness of each Gi for all i ∈ ω

Let the set T ′′ = {i ∈ ω | ∀Gi∀G′
i(Gi and G

′
i are NAU-functions =⇒ Gi = G′

i)}. In other words,
T ′′ is the set of all natural i so that the function Gi is unique. As aforementioned, for all m ∈ ω,
Am is unique by its construction. Whence, G0(m) = Am = G′

0(m) for all m in their common
domain of ω = domG0 = domG′

0. Thus, G0 = G′
0; and 0 ∈ T ′′.

Assume i ∈ T ′′. Now let the set T ′′′ =
{
n ∈ ω | ∀m

(
m ∈ ω =⇒ [Gi+(m)] (n) =

[
G′

i+(m)
]
(n)
)}

.
By definition, there exists some c′ ∈ ω for all m ∈ ω so [Gi(m)](c′) = [G′

i(m)](c′) = m since
i ∈ T ′′, and thus [Gi+(m)] (0) = c′ =

[
G′

i+(m)
]
(0). Accordingly, 0 ∈ T ′′′. If n ∈ T ′′′, then

[Gi+(m)]
(
n+
)
= [Gi(m)]

(
[Gi+(m)] (n)

)
= [G′

i(m)]
(
[G′

i+(m)] (n)
)

since i ∈ T ′′ and n ∈ T ′′′

= [G′
i+(m)]

(
n+
)

Which means that n+ ∈ T ′′′ and T ′′′ is an inductive subset of ω. By the Induction Principle for ω,
T ′′′ = ω. Therefore, for all n ∈ ω and m ∈ ω, [Gi+(m)] (n) =

[
G′

i+(m)
]
(n). We know the

functions Gi+(m) and G′
i+(m) both have domain ω, on which they agree on, so Gi+(m) = G′

i+(m)
(for all m ∈ ω). Applying the same principle, this Gi+ and G′

i+ both have a domain of ω, on
which they agree on, thus Gi+ = G′

i+ . As a result, i+ ∈ T ′′ and T ′′ is an inductive subset of ω. By
the Induction Principle for ω, T ′′ = ω. i.e. For all i ∈ ω, the function Gi is indeed unique.

With this, now we can make our notation less awkward. We were previously forced to use not
very nice notation in order to utilise the Recursion Theorem on ω in our proof. At last, we can
introduce nicer notation instead of searing your eyes out.

1. First, let the function Ĝi = {⟨⟨m,n⟩, [Gi(m)](n)⟩ |m,n ∈ ω}. We now prove our claim that
it is a function: Let ⟨m1, n1⟩ = ⟨m2, n2⟩. By definition, Gi is a function. So,
Gi(m1) = Gi(m2). Gi also maps from ω to ωω. i.e. Gi(m1) = Gi(m2) is a function.
Consequently, [Gi(m1)](n1) = [Gi(m2)](n2). Which means that Ĝi(m1, n1) = Ĝi(m2, n2).
Indeed, we can conclude Ĝi is a function mapping from ω2 to ω.

2. Secondly, let G =
{〈

⟨i,m, n⟩, Ĝi(m,n)
〉 ∣∣∣ i,m, n ∈ ω

}
. Suppose ⟨i1,m1, n1⟩ = ⟨i2,m2, n2⟩.

By uniqueness, which we proved earlier, Gi1 = Gi2 . We also know this is a function by
definition, so Gi1(m1) = Gi2(m2). Repeating the process, these are elements of ωω, and
hence, functions. Necessarily, [Gi1(m1)](n1) = [Gi2(m2)](n2). In other words,
Ĝi1(m1, n1) = Ĝi2(m2, n2); and so G(i1,m1, n1) = G(i2,m2, n2). Indeed, G is now a
function mapping from ω3 to ω.

91



Sanity Check: Does this all make sense or we create some random functions?

1. Multiplication:

Mm(1) = m (2)

Mm(0) = 0 and Am(0) = m (3)

Mm

(
n+
)

= Mm(n) +m

= m+Mm(n) by Theorem 4K (2)

= Am(Mm(n)) (4)

Hence, G1(m) =Mm for all m ∈ ω.

2. Exponentiation:

Em(1) = m (2)

Em(0) = 1 and Mm(1) = m (3)

Em

(
n+
)

= Em(n) ·m
= m · Em(n) by Theorem 4K (5)

= Mm(Em(n)) (4)

Indeed, G2(m) = Em for all m ∈ ω.

3. Tetration:

Tm(1) = m (2)

Tm(0) = 1 and Em(1) = m (3)

Tm
(
n+
)

= Em(Tm(n)) (4)

We see that G3(m) = Tm for all m ∈ ω.

Ah yes, we are indeed sane still.
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Exercises:

13. Let m and n be natural numbers such that m · n = 0. Show that either m = 0 or n = 0. ✓

Assume m ̸= 0 and n ̸= 0. We shall show that m · n ̸= 0 in such cases. Let the set
S = {k ∈ ω |m · k+ ̸= 0}. Since we know

m · 0+ = m · 0 +m (M2)

= 0 +m (M1)

= m+ 0 by Theorem 4K (2)

= m (A1)

̸= 0 by assumption

thus 0 ∈ S. If k ∈ S, then k+ ∈ S. First let T = {p ∈ ω |m+ p ̸= 0}. m+ 0 = m ̸= 0 by
assumption, so 0 ∈ T . When p ∈ T ,

m+ p+ = (m+ p)+ ̸= 0

because by Theorem 4D, 0 is not the successor of any natural number. Hence, p+ ∈ T and T is an
inductive subset of ω. By the Induction Principle for ω, T = ω; meaning the sum of any nonzero
natural number with another natural number (possibly zero) is always nonzero. As such,

m · k++ = m · k+ +m ̸= 0 since m ̸= 0 by assumption

Thence, k+ ∈ S and S is an inductive subset of ω. Again, by the Induction Principle for ω, S = ω.
Combined with the fact that for all nonzero n ∈ ω, there exists some k ∈ ω such that n = k+ by
Theorem 4C; this means that for all nonzero m,n ∈ ω, m · n ̸= 0. Taking the contrapositive of this
conditional statement, we conclude that for all m,n; m · n = 0 implies m = 0 or n = 0.

The converse is simple: Consider n = 0, then m · 0 = 0 by (N1). If m = 0,

0 · n = n · 0 by Theorem 4K (5)

= 0 (M1)

Therefore, for all m,n ∈ ω: If m = 0 or n = 0, then m · n = 0.

Wherefore, we conclude that m = 0 or n = 0 iff m · n = 0.

Remarks: Actually, instead of going the long route of proving m+ p ̸= 0 inductively and then
concluding m · k++ = m · k+ +m ̸= 0 as a result, we can go a more direct path: By Theorem 4C,
since m ̸= 0, there exists some m̂ ∈ ω so that m̂+ = m. Consequently,

m · k++ = m · k+ +m

= m̂+ · k+ + m̂+

=
(
m̂+ · k+ + m̂

)+
̸= 0 by Theorem 4D

15. Complete the proof of part (1) of Thoerem 4K.

See Self-Proof of Theorem 4K.

16. Complete the proof of part (5) of Thoerem 4K.

See Self-Proof of Theorem 4K.
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17. Prove that mn+p = mn ·mp. ✓

Proof:

Let the set S = {p ∈ ω | ∀m∀n(n ∈ ω =⇒ mn+p = mn ·mp)}. We know

mn+0 = mn (A1)

= mn + 0 (A1)

= 0 +mn by Theorem 4K (2)

= mn · 0 +mn (M1)

= mn · 0+ (M2)

= mn · 1
= mn ·m0 (E1)

So, 0 ∈ S. Suppose p ∈ S:

mn+p+

= m(n+p)+ (A2)

= m(p+n)+ by Thoerem 4K (2)

= mp+n+

(A2)

= mn++p by Thoerem 4K (2)

= mn+

·mp as p ∈ S

= (mn ·m) ·mp (E2)

= mn · (m ·mp) by Thoerem 4K (4)

= mn · (mp ·m) by Thoerem 4K (5)

= mn ·mp+

(E2)

Therefore, p+ ∈ S. Now, S is an inductive subset of ω. Consequently, by the Induction Principle
for ω, S = ω. Wherefore, for all m,n, p ∈ ω; mn+p = mn ·mp.
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1.3.5 Ordering on ω

Self-Proof of Lemma 4L: ✓

(a) ✓ Let the set S = {n ∈ ω | ∀m [m ∈ ω =⇒ (m ∈ n ⇐⇒ m+ ∈ n+)]}. m ∈ 0 implies
m+ ∈ 0+ is immediately vacuously true (for all natural m) since there exists no such m ∈ 0.
Conversely,

m ∈ m+ ∈ 0 =⇒ m ∈ 0 by Theorem 4F

So, m ∈ 0 iff m+ ∈ 0+; meaning 0 ∈ S. Whenever n ∈ S,

m ∈ n+ =⇒ m ∈ n ∪ {n}
=⇒ (m ∈ n ∨m = n)

=⇒
(
m+ ∈ n+ ∨m+ = n+

)
since n ∈ S

=⇒ m+ ∈ n+ ∪
{
n+
}

=⇒ m ∈ n++

In addition,

m+ ∈ n++ =⇒ m ∈ n+ ∪
{
n+
}

=⇒
(
m+ ∈ n+ ∨m+ = n+

)
=⇒

(
m ∈ m+ ∈ n+ ∨ m ∈ m+ = n+

)
=⇒ m ∈ n+ by Theorem 4F

Thus, n+ ∈ S. Hence, S is an inductive subset of ω. By the Induction Principle for ω,
S = ω. Wherefore, for all m,n ∈ ω: m ∈ n iff m+ ∈ n+.

(b) ✓ Let the set T = {n ∈ ω |n /∈ n}. Since ∅ /∈ ∅ by definition, 0 /∈ 0 and therefore 0 ∈ T . If
n ∈ T : Assume n+ ∈ n+, then

n+ ∈ n+ =⇒ n+ ∈ n ∪ {n}
=⇒

(
n+ ∈ n ∨ n+ = n

)
=⇒

(
n ∈ n+ ∈ n ∨ n ∈ n+ = n

)
=⇒ n ∈ n by Theorem 4F

However, n /∈ n since n ∈ T . Wherefore, by contradiction, n+ /∈ n+. i.e. n+ ∈ T , meaning T
is an inductive subset of ω. By the Induction Principle for ω, T = ω. Wherefore, for all
n ∈ ω: n /∈ n.

Remarks: In part (a), for the ⇐= direction, the simpler way is to first assume that m+ ∈ n+.
Then we have m ∈ m+ ∈− n. Hence, by Theorem 4F, m ∈ n. In part (b) we could actually just
have used part (a) to say n /∈ n ⇐⇒ n+ /∈ n+ for the inductive step.
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Self-Proof of Theorem 4N:

(i) Let the set S = {p ∈ ω | ∀m∀n⌊⌈m,n ∈ ω =⇒ (m ∈ n ⇐⇒ m+ p ∈ n+ p)⌋⌉}. We know that

m ∈ n ⇐⇒ m+ 0 ∈ n+ 0 by (A1)

Thus, 0 ∈ S. Now, assume p ∈ S.

m ∈ n ⇐⇒ m+ p ∈ n+ p since p ∈ S

⇐⇒ (m+ p)+ ∈ (n+ p)+ by Lemma 4L (a)

⇐⇒ m+ p+ ∈ n+ p+ (A2)

So, p+ ∈ S. i.e. S is an inductive subset of ω. Wherefore, by the Induction Principle for ω,
S = ω. Which means that for all m,n, p ∈ ω: m ∈ n iff m+ p ∈ n+ p.

(ii) Repeating a similar procedure; let the set
S′ = {p ∈ ω | ∀m∀n⌊⌈(m,n ∈ ω ∧ p ̸= 0) =⇒ (m ∈ n ⇐⇒ m · p ∈ n · p)}. 0 ∈ S′

immediately holds true by the definition of a conditional statement. Suppose that p ∈ S′,
then

m ∈ n ⇐⇒ m · p ∈ n · p since p ∈ S′

⇐⇒ m · p+m ∈ n · p+ n by (i)

⇐⇒ m · p+ ∈ n · p+ (M2)

So, p+ ∈ S′. i.e. S′ is an inductive subset of ω. Wherefore, by the Induction Principle for ω,
S′ = ω. Which means that for all m,n, p ∈ ω: m ∈ n iff m · p ∈ n · p.

Q.E.D. ■

Self-Proof of Corollary 4P:

If m+ p = n+ p, then neither m+ p ∈ n+ p nor n+ p ∈ m+ p are true by the Trichotomy Law
for ω. Hence, utilising Theorem 4N, both m ∈ n and n ∈ m are false. Consequently, again with
aid of the Trichotomy Law for ω, m = n must be true since the other two options are provably
false (as shown above).

Alternatively, if we prefer a presentation with symbols instead;

m+ p = n+ p =⇒ (m+ p /∈ n+ p ∧ n+ p /∈ m+ p) by the Trichotomy Law for ω

=⇒ (m /∈ n ∧ n /∈ m) by Theorem 4N

=⇒ m = n by the Trichotomy Law for ω

Now, for multiplication, we repeat the above procedure similarly. Assume m · p = n · p and p ̸= 0.
Then, it follows from the Trichotomy Law for ω, that m · p /∈ n · p and n · p /∈ m · p. Using
Theorem 4N, both m ∈ n and n ∈ m are certainly false. Wherefore, again with the Trichotomy
Law for ω, we know m = n holds true since the other two options are false.

Again, symbolically: Suppose p ̸= 0, then

m · p = n · p =⇒ (m · p /∈ n · p ∧ nṗ /∈ m · p) Trichotomy Law for ω

=⇒ (m /∈ n ∧ n /∈ m) Theorem 4N

=⇒ m = n Trichotomy Law for ω

Note that now we have proven the statement that

p ̸= 0 =⇒ (m · p = n · p =⇒ m = n)
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We can rewrite it equivalently into the desired form in Corollary 4P,

⌊⌈p ̸= 0 =⇒ (m · p = n · p =⇒ m = n)⌋⌉ ⇐⇒ ⌊⌈¬(p ̸= 0) ∨ (m · p = n · p =⇒ m = n)⌋⌉
⇐⇒ ⌊⌈¬(p ̸= 0) ∨ ⌊⌈¬(m · p = n · p) ∨m = n⌋⌉⌋⌉
⇐⇒ ⌊⌈¬¬⌊⌈¬(p ̸= 0) ∨ ¬(m · p = n · p)⌋⌉ ∨m = n⌋⌉
⇐⇒ ⌊⌈¬⌊⌈p ̸= 0 ∧ m · p = n · p⌋⌉ ∨m = n⌋⌉
⇐⇒ ⌊⌈(m · p = n · p ∧ p ̸= 0) =⇒ m = n⌋⌉

We can hence conclude that (m · p = n · p ∧ p ̸= 0) =⇒ m = n is true.

Q.E.D. ■

Self-Proof of Corollary 4Q: (Saw a bit of Enderton’s proof but whatever)

Assume that there exists such a function f : ω → ω so that f(n+) ∈ f(n) for every natural number
n. We see that for all m ∈ ran f , there exists n ∈ ran f with n ∈ m.

m ∈ ran f =⇒ ∃k(f(k) = m)

=⇒ ∃k
[
f
(
k+
)
∈ f(k)

]
by the definition of f

=⇒ ∃n[n ∈ ran f ∧ n ∈ m]

Thus, we know that its negation — there exists m ∈ ran f for all n ∈ ran f so that ¬(n ∈ m) —
must be false. The last bit can be rewritten using the Trichotomy Law for ω as m ∈− n. Whence,
there does not exist a least element in ran f , which is a subset of ω, by definition. Wherefore, by
contradiction with the Well Ordering of ω, there indeed exists no such function.

Q.E.D. ■

Self-Proof of the Strong Induction Principle for ω:

Assume that the Strong Induction Principle for ω is false, i.e. there exists some A ⊆ ω so that for
every n in ω, if every number less than n is in A, then n ∈ A. But suppose that, however, A ̸= ω.

By the Well Ordering of ω, we know that there exists some (natural) least element m of ω \A.
Thus, for all natural k ∈ m, k /∈ ω \A, lest there exist some k ∈ ω \A with k ∈ m, which would
mean m is not the least element of ω \A. So, for all natural k ∈ m, k ∈ A. However, by the
Strong Induction Hypothesis — that for every n ∈ ω, if every number less than n is in A, then
n ∈ A — we know that m ∈ A. This contradicts our previous fact that m ∈ ω \A. Wherefore, by
contradiction, the Strong Induction Principle for ω certainly is true.

Q.E.D. ■
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Exercises:

18. Simplify: ∈−1
ω J{7, 8}K.

Answer:

∈−1
ω J{7, 8}K = {⟨m,n⟩ |m ∈ {7, 8} ∧ n ∈ω m}

= {⟨8, 7⟩, ⟨8, 6⟩, . . . , ⟨8, 0⟩, ⟨7, 6⟩, ⟨7, 5⟩, . . . , ⟨7, 0⟩}

20. Let A be a nonempty subset of ω such that
⋃
A = A. Show that A = ω.

Proof:

Assume there exists some nonempty subset A of ω so that
⋃
A = A but A ̸= ω. By the Well

Ordering of ω, there exists some least element m of ω \A. There either exists some k ∈ A with
m ∈ k or for all k ∈ A, m /∈ k.

In the first case, m ∈ k ∈ A, so m ∈
⋃
A = A. However, this contradicts our assumption that

m ∈ ω \A.

As for the latter; first note there exists some n ∈ ω with n+ = m by Theorem 4C. In fact, more
specifically n ∈ A, lest n ∈ m for some n ∈ ω \A. Notice that for all k̂ ∈ A, k̂ ∈− n: Suppose

otherwise. Then, it is false that for all k̂ ∈ A, k̂ ∈ n+. Thus, it is true that there exists k̂ ∈ A with
k̂ /∈ n+. By the Trichotomy Law for ω, m = n+ ∈− k̂. Since m /∈ A while k̂ ∈ A, it must be that

m ∈ k̂. However, this contradicts our presumption for this latter case, that for all k ∈ A, m /∈ k.
So, it must be true that for all k̂ ∈ A, n ∈− k̂. Again from the Trichotomy Law for ω, this means

n /∈ k̂. (Notice that this is the negation of there exists k̂ ∈ A with n ∈ k̂.) Consequently,
n /∈

⋃
A = A. But this contradicts the fact we established earlier that n ∈ A.

Wherefore, since in both cases we arrive at a contradiction, it must be that for all nonempty
subsets A of ω, if

⋃
A = A, then A = ω.

Q.E.D. ■

26. Assume that n ∈ ω and f : n+ → ω. Show that ran f has a largest element.

Proof:

We first construct the set of all natural numbers not smaller than or equal to some number in
ran f ; i.e. ω \ (ran f ∪

⋃
ran f). By the Well Ordering of ω, there exists some least element m of

ω \ (ran f ∪
⋃
ran f).

We know ran f is nonempty, because: for all κ ∈ n+, there exists k ∈ ran f . So, since n+ ̸= 0 = ∅
by Theorem 4D, there must exist some k ∈ ran f . Since ran f ̸= ∅, 0 ∈ ran f ∪

⋃
ran f :

Let the set S = {k ∈ ω | 0 ∈− k}. By definition, 0 ∈ S. Suppose k ∈ S. If k = 0, 0 ∈ k+. When 0 ∈ k,
0 ∈ k+. Thus, k+ ∈ S and S is an inductive subset of ω. By the Induction Principle for ω, S = ω. As
ran f ̸= ∅ (and is a subset of ω): Either 0 ∈ ran f . Or for all k ∈ ran f (of which there exists at least 1),
k ̸= 0 and 0 ∈ k ∈ ran f , so 0 ∈

⋃
ran f . Regardless, 0 ∈ ran f ∪

⋃
ran f is true.

Consequently, m ̸= 0 since m /∈ ran f ∪
⋃

ran f . Therefore, there exists ñ ∈ ω with ñ+ = m by
Theorem 4C. As n ∈ m, m ∈ n is false by the Trichotomy Law for ω. As a result,
n ∈ ran f ∪

⋃
ran f .

We claim that ñ is the largest element of ran f ∪
⋃

ran f . Assume otherwise. Then, it is false that
for all k ∈ ran f ∪

⋃
ran f , k ∈− ñ. Accordingly, it is also that false for all k ∈ ran f ∪

⋃
ran f ,

k ∈ ñ+. It is then true that there exists k ∈ ran f ∪
⋃

ran f with k /∈ ñ+. By the Trichotomy Law
for ω, ñ+ ∈− k. In other words, m ∈− k. Since m /∈ ran f ∪

⋃
ran f , m ∈ k. Now, either

m ∈ k ∈ ran f or m ∈ k ∈
⋃
ran f . In the latter, there exists k̂ such that m ∈ k ∈ k̂ ∈ ran f . By

Theorem 4F, m ∈ k̂ ∈ ran f . Thence, in both cases, m ∈
⋃

ran f . Clearly, this contradicts the fact
that m /∈ ran f ∪

⋃
ran f . Whence, it must be that ñ is the largest element of ran f ∪

⋃
ran f .
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It must be that n ∈ ran f , because if it is in
⋃

ran f , then there exists some k ∈ ran f such that
ñ ∈ k. By the Trichotomy Law for ω, k /∈− ñ. Which contradicts the established fact that ñ is the
largest element of ran f ∪

⋃
ran f . Hence, ñ ∈ ran f holds true.

Wherefore, ñ is indeed the largest element of ran f .

Q.E.D. ■

27. Assume that A is a set, G is a function, and f1 and f2 map ω into A. Further assume that for
each n in ω both f1 ↾ n and f2 ↾ n belong to domG and

f1(n) = G(f1 ↾ n) & f2(n) = G(f2 ↾ n).

Show that f1 = f2.

Proof:

Let the set S = {n ∈ ω | f1(n) = f2(n)}. If every number less than n is in S, then for all k ∈ n:
f1(k) = f2(k). Hence, f1 ↾ n = {⟨k, f1(k)⟩ | k ∈ n} = {⟨k, f2(k)⟩ | k ∈ n} = f2 ↾ n. Consequently,
n ∈ S since f1(n) = G(f1 ↾ n) = G(f2 ↾ n) = f2(n). By the Strong Inducion Principle for ω,
S = ω. Wherefore; f1 = {⟨n, f1(n)⟩ |n ∈ ω} = {⟨n, f2(n)⟩ |n ∈ ω} = f2.

Q.E.D. ■
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1.4 Construction of The Real Numbers

*Note that from here on out, we will use Theorem 4K without stating it. (No real point to do so)

1.4.1 Integers

Self-Proof of Theorem 5ZA:

Clearly, by Thoerem 4K (2), we have m+ n = n+m for all natural m and n. Thus,
⟨m,n⟩ ∼ ⟨m,n⟩, and hence, ∼ is reflexive on ω × ω. If ⟨m,n⟩ ∼ ⟨p, q⟩, then we know
m+ q = p+ n by definition. Which can be rewritten as p+ n = m+ q. Thus, ⟨p, q⟩ ∼ ⟨m,n⟩
immediately follows. So, ∼ is symmetric. Lastly, assume ⟨m,n⟩ ∼ ⟨p, q⟩ and ⟨p, q⟩ ∼ ⟨r, s⟩. In
other words, m+ q = p+ n and p+ s = r + q. Whence,

m+ q + p+ s = p+ n+ r + q

m+ s = r + n by Corollary 4P

Consequently, ⟨m,n⟩ ∼ ⟨r + s⟩; meaning ∼ is transitive.

Wherefore, since the relation ∼ is reflexive on ω × ω, symmetric, and transitive, ∼ indeed is an
equivalence relation.

Q.E.D. ■

Self-Proof of Lemma 5ZB:

Assume that ⟨m,n⟩ ∼ ⟨m′, n′⟩ and ⟨p, q⟩ ∼ ⟨p′, q′⟩. Thus, we know that m+ n′ = m′ + n and
p+ q′ = p′ + q. Summing them up, we get that

m+ n′ + p+ q′ = m′ + n+ p′ + q

m+ p+ n′ + q = m′ + p′ + n+ q

Consequently, ⟨m+ p, n+ q⟩ ∼ ⟨m′ + p′, n′ + q′⟩ by definition.

Q.E.D. ■

Self-Proof of Commutativity for Theorem 5ZF:

By definition, for any integers a and b, there exists natural numbers m, n, p, and q with
a = [⟨m,n⟩] and b = [⟨p, q⟩]. Therefore,

a ·Z b = [⟨m,n⟩] ·Z [⟨p, q⟩]
= [⟨mp+ nq,mq + np⟩]
= [⟨pm+ qn, pn+ qm⟩]
= [⟨p, q⟩] ·Z [⟨m,n⟩]
= b ·Z a.

Which means that, the multiplication operation ·Z is commutative indeed.

Q.E.D. ■

Self-Proof of Theorem 5ZG:

(a) By definition, for any integer a, there exists natural numbers m and n with a = [⟨m,n⟩]. So,

a ·Z 1Z = [⟨m,n⟩] ·Z [⟨1, 0⟩]
= [⟨m · 1 + n · 0,m · 0 + n · 1⟩]
= [⟨m,n⟩]
= a

Thus, as desired, the integer 1Z is the multiplicative identity.
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(b) Since 0 + 0 = 0 while 1 + 0 = 1, we know 0 + 0 ̸= 1 + 0. Therefore, ⟨0, 0⟩ ∼ ⟨1, 0⟩ is false.
Hence, it is indeed true that 0Z ̸= 1Z.

(c) Let a ̸= 0Z and b ̸= 0Z. Then, there exists nonzero natural numbers m, n, p, and q such that
a = [⟨m,n⟩] and b = [⟨p, q⟩]. As a result,

a ·Z b = [⟨m,n⟩] ·Z [⟨p, q⟩]
= [⟨mp+ nq,mq + np⟩].

By exercise 13 of chapter 4, we know that mp, nq, mq, np are all nonzero. Whence, first
notice that there exists α, β ∈ ω with α+ = nq and β+ = np by Theorem 4C. We now know
that ⟨mp+ α+,mq + β+⟩ = [⟨(mp+ α)+, (mq + β)+⟩] (by (A2)); where (mp+ α)+ and
(mq + β)+ are certainly nonzero by Theorem 4D.

Consequently, we conclude that for all integers a and b; a ·Z b ̸= [⟨0, 0⟩] = 0Z. Taking the
contrapositive of this conditional statement, we know that for all m and n, a ·Z b = 0 implies
a = 0Z or b = 0Z.

Q.E.D. ■

Remarks: Note that [⟨m,m⟩] = [⟨0, 0⟩] = 0Z! So, we actually have not proven that a·Z ̸= 0Z.
Instead, what we could do is something like the following by Enderton:

Since a ̸= [⟨0, 0⟩], we have m ̸= n. So either m ∈ n or n ∈ m. Similarly, either p ∈ q or q ∈ p. This
leads to a total of four cases, but in each case we have

mp+ nq ̸= mq + np

by Exercise 25 of Chapter 4. Hence, a ·Z b ̸= [⟨0, 0⟩].

In my defense, it was 11 already. *Copes harder*

Self-Proof of Theorem 5ZI:

For all integers a and b, there exists natural numbers m, n, p, and q with a = [⟨m,n⟩] and
b = [⟨p, q⟩] by definition. So, exactly one of the following is true by the Trichotomy Law for ω.

m+ q = p+ n, m+ q ∈ p+ n, or p+ n ∈ m+ q.

Which also equivalently means that exactly one of the below options is true

[⟨m,n⟩] = [⟨p, q⟩], [⟨m,n⟩] <Z [⟨p, q⟩], or [⟨p, q⟩] <Z [⟨m,n⟩].

Therefore, <Z satisfies trichotomy on Z because one and only one of these are true:

a = b, a <Z b, or b <Z a.

Also, for any integer c, there exists the natural numbers r, and s so c = [⟨r, s⟩]. As a result, when
a <Z b and b <Z c, m+ q ∈ p+ n and p+ s ∈ r+ q. Adding an s and an r respectively to each, we
get that m+ q + s ∈ p+ n+ s and p+ s+ n ∈ r + q + n. By Theorem 4F, m+ q + s ∈ r + q + n.
Via Theorem 4N, we conclude that m+ s ∈ r + n. i.e. <Z is transitive since [⟨m,n⟩] <Z [⟨r, s⟩].

Wherefore, since <Z satisfies trichotomy on Z and is transitive, <Z must be a linear ordering
relation on Z.

Q.E.D. ■
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Self-Proof of Corollary 5ZK:

(a) Since a+Z c = b+Z c, thus we know that both a+Z c <Z b+Z c and b+Z c <Z a+Z c are by
trichotomy (since <Z is a linear ordering from Theorem 5ZI). Now, by Theorem 5ZJ (a), we
know that the following are both false: a <Z b and b <Z a. Wherefore, again by trichotomy,
it must be that a = b.

(b) We apply a similar procedure as used in the above proof of (a). Assume c ̸= 0Z and
a ·Z c = b ·Z c. Accordingly, by trichotomy, both a ·Z c <Z b ·Z c and b ·Z c <Z a ·Z c are false.
Which then means a <Z b and b <Z a are false too by Theorem 5ZJ (b). Wherefore, utilising
trichotomy one last time, it must be true that a = b.

Q.E.D. ■
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Exercises:

3. Is there a function H : Z → Z satisfying the equation

H([⟨m,n⟩]) = [⟨n,m⟩]?

Answer:

We construct the set H = {⟨[⟨m,n⟩], [⟨n,m⟩]⟩ |m,n ∈ ω} by some applying a subset axiom
to Z× Z.

Now, we verify that it is a (well-defined) function. Let ⟨m,n⟩ ∼ ⟨p, q⟩, meaning
m+ q = p+ n. Clearly, n+ p = q +m, which means that ⟨n,m⟩ ∼ ⟨q, p⟩. Consequently, we
see that

H([⟨m,n⟩]) = [⟨n,m⟩]
= [⟨q, p⟩] by the above fact

= H([⟨p, q⟩]).

Thence, it is indeed a function, which clearly also satisfies the given equation. Wherefore,
such a function indeed exists (we just constructed one).

5. Give a formula for subtraction of integers:

[⟨m,n⟩]− [⟨p, q⟩] = ?

Answer:

By the definition given earlier about the subtraction of integers, namely that:

b− a = b+Z (−a) for any integers a and b,

we see that

[⟨m,n⟩]− [⟨p, q⟩] = [⟨m,n⟩] + (−[⟨p, q⟩])
= [⟨m,n⟩] +Z [⟨q, p⟩]
= [⟨m+ p, q + n⟩]

So, our formula for the subtraction of integers is

[⟨m,n⟩]− [⟨p, q⟩] = [⟨m+ p, q + n⟩].

8. Prove parts (a), (b), and (c) of Theorem 5ZL.

Proof:

(a)

E(m) +Z E(n) = [⟨m, 0⟩] + [⟨n, 0⟩]
= [⟨m+ n, 0⟩]
= E(m+ n)

(b)

E(m) ·Z E(n) = [⟨m, 0⟩] ·Z [⟨n, 0⟩]
= [⟨mn+ 0 · 0,m · 0 + 0 · n⟩]
= [⟨mn, 0⟩]
= E(mn)
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(c) Assume m ∈ n. Then, clearly m+ 0 ∈ n+ 0. Hence, [⟨m, 0⟩] <Z [⟨n, 0⟩].

Consider the converse, first supposing that [⟨m, 0⟩] <Z [⟨n, 0⟩]. By definition,
m+ 0 ∈ n+ 0. Which is simplified to m ∈ n, as desired.

Wherefore, we can now conclude that m ∈ n iff E(m) <Z E(n).

Q.E.D. ■

9. Show that
[⟨m,n⟩] = E(m)− E(n)

for all natural numbers m and n.

Proof:

We see that

E(m)− E(n) = [⟨m, 0⟩] +Z (−[⟨n, 0⟩])
= [⟨m, 0⟩] +Z [⟨0, n⟩]
= [⟨m+ 0, 0 + n⟩]
= [⟨m,n⟩]

as desired.

Q.E.D. ■
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1.4.2 Rational Numbers

Self-Proof of Theorem 5QA:

Reflexivity on Z× Z′: Assume that ⟨a, b⟩ ∈ Z× Z′. Then, it clearly holds that a · b = a · b. Which
now means that ⟨a, b⟩ ∼ ⟨a, b⟩; i.e. ∼ is indeed reflexive on Z× Z′.

Symmetry: Let ⟨a, b⟩ ∼ ⟨c, d⟩. It follows that a · d = c · b. Immediately, c · b = a · d must hold true
too. Thus, ⟨c, d⟩ ∼ ⟨a, b⟩ by definition; and so ∼ is symmetric.

Transitivity: Suppose that ⟨a, b⟩ ∼ ⟨c, d⟩ and ⟨c, d⟩ ∼ ⟨e, f⟩. This means that a · d = c · b and
c · f = e · d. Accordingly, a · d · f = c · b · f and c · f · b = e · d · b. By Theroem 5ZF,
a · f · d = c · b · f and c · b · f = e · b · d. Consequently, a · f · d = e · b · d. By Corollary 5ZK (as
d ∈ Z′ is nonzero), a · f = e · b. Therefore, ⟨a, b⟩ ∼ ⟨e, f⟩. We can conclude that ∼ is transitive.

Wherefore, since the relation ∼ is reflexive on Z× Z′, symmetric, and transitive, it is an
equivalence relation on Z× Z′.

Q.E.D. ■

Self-Proof of Corollary 5QG:

Assume r and s are nonzero rational numbers, i.e. there exists the nonzero integers a, b, c, and d
so that r = [⟨a, b⟩] and s = [⟨c, d⟩]. Thus, [⟨a, b⟩] ·Z [⟨c, d⟩] = [⟨ac, bd⟩]. Since a and c are nonzero,
ac ̸= 0 by the contrapositive of Theorem 5ZG (c). Consequently, ac · 1 ̸= 0 · bd, lest ac = 0. Which
implies that ⟨ac, bd⟩�∼ 0Q. In other words, r · s is nonzero.

Q.E.D. ■

Self-Proof of Lemma 5QH:

By assumption, ⟨a, b⟩ ∼ ⟨a′, b′⟩ and ⟨c, d⟩ ∼ ⟨c′d′⟩, where b, b′, d, and d′ are all positive. So, we
know that ab′ = a′b and cd′ = c′d. Then,

ad < cb ⇐⇒ adb′d′ < cbb′d′

⇐⇒ ab′dd′ < cd′bb′ by Theorem 5ZF

⇐⇒ a′bdd′ < c′dbb since ab′ = a′b and cd’=c’d

⇐⇒ a′d′bd < c′b′bd by Theorem 5ZF

⇐⇒ a′d′ < c′b′ by Theorem 5ZJ (b)

Wherefore, indeed ad < cd iff a′d′ < c′b′.

Q.E.D. ■

Self-Proof of Thereom 5QI:

Trichotomy (on Q): By Theroem 5ZI, exactly one of the following are true:

ad = cb, ad < cb, or cb < ad.

Which means that one and only one of the below is true

r = s, r < s, or s < r.

Thus, <Q satisfies trichotomy on Q.

Transitivity: Assume that p <Q q and q <Q r. By definition, there exists the integers a, c, e, as
well as the positive integers b, d, and e with p = [⟨a, b⟩], q = [⟨c, d⟩], and r = [⟨e, f⟩]; such that
ad < cb and cf < ed. Consequently, we know that

adf < cbf and cfb < edb
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by Theorem 5ZJ (b) (since b and f are nonzero). With Theorem 5ZF, we can rearrange the above
(equivalently) as

afd < cbf and cbf < ebd.

Now, by Theorem 5ZI (transitivity of <), afd < ebd. Finally, utilising Theroem 5ZJ (b) (as d is
nonzero), we conclude that af < eb. As a result, p <Q r and transitivity holds.

Wherefore, we clearly see that <Q must be a linear ordering on Q.

Q.E.D. ■
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Exercises:

11. Give a direct proof (not using Theorem 5QF) that if r ·Q s = 0Q, then either r = 0Q or
s = 0Q.

Proof. See my Self-Proof of Corollary 5QG, as this is the contrapositive of Corollary 5QG.

12. Show that
r <Q 0Q iff 0Q <Q −r.

Proof.

Let r be a rational number. In other words, r = [⟨a, b⟩] for some integer a and nonzero
integer b. Then,

r <Q 0Q ⇐⇒ a · 1 < 0 · b
⇐⇒ a < 0

⇐⇒ a− a < −a by Theorem 5ZD (b)

⇐⇒ 0 < −a
⇐⇒ 0 · b < −a · 1
⇐⇒ 0 <Q r.

Thus, we have shown that indeed r <Q 0Q iff 0Q <Q −r.

Q.E.D. ■

14. Show that the ordering of the rationals is dense, i.e., between any two rationals there is a
third one:

p <Q s =⇒ ∃r(p <Q r <Q s).

Proof.

Let p <Q s. We can write p = [⟨a, b⟩] and s = [⟨c, d⟩] for some integers a, c, and positive
integers b, d so that ad < cb.

Now we construct the rational number r = [⟨a+ c, b+ d⟩]. As addition (of integers)
preserves order by Theorem 5ZJ, we see that

ab+ ad < cb+ ad and ad+ cd < cb+ cd.

Consequently, we apply the commutative of integer addition from Theorem 5ZC to restate
the above equivalently as

ab+ ad < ad+ cb and ad+ cd < cb+ cd.

Hence, since for integers, multiplication distributes over addition by Theorem 5ZF;

a(b+ d) < (a+ c)b and (a+ c)d < c(b+ d).

Wherefore, we can conclude that p <Q r <Q s indeed.

Q.E.D. ■
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1.4.3 Real Numbers

Self-Proof of Theorem 5RA:

Transitivity: Let x <R y and y <R z. We then know that x ⊂ y and y ⊂ z by definition. Thus, all
elements of x are in y, and hence, in z too. In addition, (as y ⊂ z) there exists an element of z
that is not in y, and so, not in x as well. Consequently, x ⊂ z, i.e. x <R z. Which means that <R
is transitive.

Trichotomy on R: Assume that for real numbers x and y, there exists r ∈ x with r /∈ y and there
exists q ∈ y so q /∈ x. By the trichotomy of < (Theorem 5QI), exactly one of

q < r, q = r, r < q

is true. We now evaluate them casewise using the fact that x and y are closed downwards:

1. When q < r, then q ∈ x.

2. If q = r, then immediately, they are elements of both x and y.

3. Whenever r < q, it follows that r ∈ y.

In any case, it contradicts our original assumption that q /∈ x and r /∈ y. Therefore, it must be
true that for all r ∈ x, r ∈ y, or for all q ∈ y, q ∈ x. In other words, either

x ⊆ y or y ⊆ x.

Which is the same as saying
x ⊂ y or x = y or y ⊂ x.

Now, we see that only one of the above holds true; lest x ⊂ x, y ⊂ y or x ⊂ y ⊂ x, which implies
x ⊂ x. Hence, <R satisfies trichotomy on R.

Wherefore, the relation <R is indeed a linear ordering on R.

Q.E.D. ■

Self-Proof of Theorem 5RB:

Let S be a bounded nonempty subset of R, and U be the set of all upper bounds of S. We claim
that

⋂
U is a least upper bound in R:

(a) Since S is nonempty, there exists one x ∈ S that is itself nonempty by definition. Hence
there is some q ∈ x. By definition, for all x ∈ S and b ∈ U , x ≤R b. Which is the same as
saying x ⊆ b. Thus, q ∈ b for all b ∈ U . In other words, q ∈

⋂
U ; meaning

⋂
U ̸= ∅. We also

know, all upper bounds of S must be real numbers. That is, all of them are proper subsets
of Q. Therefore,

⋂
U ⊂ Q as well. In sum, we have shown that ∅ ̸=

⋂
U ̸= Q, and that

⋂
U

is a subset of Q in this paragraph.

(b) Now, (for any rational numbers p and q) if q ∈
⋂
U and p < q, then for all b ∈ S, q ∈ b and

p < q. Since b is real, it is closed downwards. Consequently, p ∈ b (again, for all b ∈ S).
Thence, p ∈

⋂
U . We see that

⋂
U is also closed downwards.

(c) Given any r ∈ b ∈ U , there must exist q ∈ b with r < q since the real numbers b have no
largest element. Accordingly, this can be immediately rephrased into: for all r ∈

⋂
U , there

exists q ∈
⋂
U so that r < q. Whence,

⋂
U is closed downwards.

As a result, we conclude that
⋂
U is a real number. We need to lastly show that

⋂
U is the least

upper bound:
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Clearly, for any b ∈ U ,
⋂
U ⊆ b. Thereupon, we see that

⋂
U ≤R b by definition. i.e.

⋂
U is a

(real) least upper bound of S.

Wherefore, any bounded nonempty subset S of R indeed has a least upper bound,
⋂
U in R.

Q.E.D. ■

Self-Proof of Lemma 5RC:

Let x and y be real numbers. We now verify that x+R y is real:

(a) By definition, x and y are nonempty. So, let q ∈ x and r ∈ y, of which there exists at least
one such q and r respectively. Then, r + q ∈ x+R y by definition, implying that x+R y ̸= ∅.
Clearly, x+R y is a subset of Q since ran+ ⊆ Q. We also know that x and y are proper
subsets of Q, meaning there exists some rational numbers s1 not in x and s2 not in y.
Consequently, the rational number s1 + s2 is also not in x+R y. As desired, x+R y ⊂ Q. In
sum, ∅ ̸= x+Q y ⊂ Q.

(b) Assume q + r ∈ x+R y where q ∈ x and r ∈ y, and the rational number b is less than q + r.
It follows that b− r < q. Therefore, b− r ∈ x since the real number x is closed downwards.
Whence, b− r + r = b is in x+R y. i.e. x+R y is also closed downwards.

(c) Let s ∈ x+R y. By definition, there exists q ∈ x and r ∈ y with s = q + r. We know that the
reals x and y have no largest member. Hence, there exists some q̃ ∈ x and r̃ ∈ y so q < q̃
and r < r̃. Furthermore, we see that q + r < q̃ + r and q̃ + r < q̃ + r̃. Finally, by the
transitivity of <, q + r < q̃ + r̃. Which means that we have just shown that for any element
of x+R y, there exists another one greater than it in x+R y. In other words, x+R y has no
largest element.

Wherefore, x+R y is in R.

Q.E.D. ■

Remarks: This does not immediately mean that s1 + s2 /∈ x+R y. Its still not clear that s1 + s2
must not be in x+R y. Actually, we need to add in one last part to complete our argument:

Consequently, for any q ∈ x and r ∈ y, it must be that q < s1 and r < s2: Lest s1 ≤ q but s1 /∈ x
or s2 ≤ r but s2 /∈ y (which would violate the fact that the reals x and y are closed downwards).
Thus, q + r < s1 + r and s1 + r < s1 + s2. By the transitivity of < on Q, q + r < s1 + s2.
Thereupon, for all members q + r of x+R y, q + r ̸= s1 + s2, by trichotomy. Thence,
s1 + s2 /∈ x+R y . . .

Self-Proof of Theorem 5RE:

(a) (A) By definition, 0R contains only (negative) positive rational numbers, and thus, it is a
subset of Q. Notice that −1 ∈ 0R, meaning it is indeed nonempty. In sum, we proved
∅ ̸= 0R ⊂ Q.

(B) If q ∈ x and r < q < 0, by transitivity, we know r < 0 as well. Hence, r ∈ x. Therefore,
x is closed downwards.

(C) Suppose q ∈ 0R. Then, q < 0. By Exercise 14 of the last section on rational numbers,
there exists q′ with q < q′ < 0. As a result, q′ ∈ 0R. i.e. We have shown that 0R has no
largest member.

Since 0R is a subset of Q with the 3 above properties, it is a real number.

(b) i. x+R 0R ⊆ x: Let q ∈ x and r ∈ 0R. So, we know r < 0. Hence, q + r < q. Since x is a
real number, it is closed downwards: q + r ∈ x. Thence, x+R 0R ⊆ x.
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ii. x ⊆ x+R 0R: Again, we assume q ∈ x. Since the real number x has no largest element,
there must exist some q̃ ∈ x with q < q̃. Accordingly, q − q̃ < 0, implying that
q − q̃ ∈ 0R. Consequently, q̃ + (q − q̃) = q ∈ x+R 0R. In other words, x ⊆ x+R 0R.

Whence, we can conclude that x+R 0R = x.

Q.E.D. ■

Self-Proof of Theorem 5RF:

(a) As per normal, we need to verify the three properties of real numbers:

(A) Let −s ∈ Q \ x, of which there exists at least one since x ⊂ Q. Then, s− 1 < s, and
thus, s− 1 ∈ −x. As a result, −x ̸= ∅. Consider r′ ∈ x. As the real number x is
nonempty, we have that there again is at least one such r′ ∈ x. Subsequently, for any
s̃ > −r′, we see that −s̃ < r′. Correspondingly, −s̃ ∈ x since x is closed downwards.
Resultantly, this means that −r′ /∈ −x because there exists no s̃ > −r′ so that −s̃ /∈ x.
In other words, −x ⊂ Q. In sum, it has been shown here that ∅ ̸= x ⊂ Q.

(B) Assume r ∈ −x and the rational number q is less than r. So, there must exist some
s > r with −s /∈ x. Hence, q < r < s, and by transitivity, s > q. Thence, q ∈ −x. We
see that −x is closed downwards.

(C) We give two proofs that −x has no largest member, first by contradiction and then
directly:

V1. Suppose −x has a largest element r∗. It follows from definition that there exists
some s > r∗ with −s /∈ x. Now, s must not be in −x; lest s ∈ −x and s > r∗

— which would mean r∗ is not the largest member of −x. However, we see that a
contradiction is inevitable; because by Exercise 14 of this chapter — that states
that the ordering of the rationals is dense — there exists q∗ with r∗ < q∗ < s.
Therefore, it is clear that q∗ ∈ −x and r∗ < q∗ simultaneously. Whence,
contradicting our assertion that −x has a largest element r∗. Consequently, it must
be that −x has no largest element.

V2. Suppose r ∈ −x again. Once more, we know there exists some s > r with −s /∈ x
by definition. Now, either s ∈ −x or s /∈ −x. Consider the former case of s ∈ −x:
immediately we see that s > r and s ∈ −x simultaneously. In the latter case of
−s /∈ x, by Exercise 14 of this chapter (that proves that the ordering of rationals is
dense), there exists some rational q with r < q < s. Therefore, q ∈ x and q > r
again. In any case, it is clear that for any element of −x, there exists another
larger one in −x. Whence, −x has no largest element.

Since −x is a subset of Q satisfying the 3 properties above, it certainly is a real number.

Q.E.D. ■
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Exercises

16. In Lemma 5RC, show that x+R y has no largest element.

Proof:

See Self-Proof of Lemma 5RC.

18. Assume that p is a positive rational number. Show that for any integer b there is some k in
ω with

r < p · E(E(k)).

(Here, k is in ω, E(k) is the corresponding integer, and E(E(k)) is the corresponding
rational.)

Proof:

Notational note before we start: We shall include a subscript for addition, multiplication and
ordering of integers and rationals. As well as for some specific integers like 0Z and 1Z. While
for natural numbers (and any operations on them), we will not.

We can write r = [⟨a, b⟩] and q = [⟨c, d⟩] for some integer a, positive integers b, c, and d.
Repeating this procedure, we see that there exists natural numbers m, n, p, q, r, s, i, and j
so

a = [⟨m,n⟩], b = [⟨p, q⟩], c = [⟨r, s⟩], and d = [⟨i, j⟩].

By the Trichotomy Law for ω, any natural number is either 0 or contains 0. Thus,
0 ∈− mr + ns+ ip+ jq + 1. Using Theorem 4N, that shows that ∈ is preserved under
addition of naturals, we arrive at two results:

{i} (mr + ns+ ip+ jq) + 0 ∈ (mr + ns+ ip+ jq + 1), and

{ii} (mr + ns+ ip+ jq + 1) ∈− (mr + ns+ ip+ jq + 1) + (ms+ nr + iq + jp)

Therefore, since natural numbers are transitive sets by Theorem 4F, s

(mr + ns+ ip+ jq) + 0 ∈ (mr + ns+ ip+ jq + 1) + (ms+ nr + iq + jp).

As a result, by the definition of the ordering on integers;

[⟨mr + ns+ ip+ jq, ms+ nr + iq + jp⟩] <Z [⟨mr + ns+ ip+ jq + 1, 0⟩].

We now simplify each side of this inequality, starting from the left first:

[⟨mr + ns+ ip+ jq, ms+ nr + iq + jp⟩] = [⟨mr + ns,ms+ nr⟩] +Z [⟨ip+ jq, iq + jp⟩]
= [⟨m,n⟩] ·Z [⟨r, s⟩] +Z [⟨i, j⟩] ·Z [⟨p, q⟩]
= ac+Z db.

Similarly for the right, it is just E(mr + ns+ ip+ jq + 1). Hence, we can rewrite our above
inequality as

ac+Z db <Z E(mr + ns+ ip+ jq + 1).

To again utilise the fact that the ordering of integers is transitive, we notice two facts again:

{i} (ac+Z db) · 1Z <Z E(mr + ns+ ip+ jq + 1), and

{ii} E(mr + ns+ ip+ jq + 1) <Z E(mr + ns+ ip+ jq + 1) · bc, because bc is a positive
integer2.
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It follows that
(ac+Z db) · 1Z <Z E(mr + ns+ ip+ jq + 1) · bc.

Thence, by the definition of the linear ordering on the rationals,

[⟨ac+ db, bc⟩] <Q [⟨E(mr + ns+ ip+ jq + 1), 1Z⟩].

Once more, we repeat the process of simplifying both sides, again starting from the left:

[⟨ac+ db, bc⟩] = [⟨a, b⟩] ·Q [⟨d, c⟩].

Then, as for the right, it is simply

[⟨E(mr + ns+ ip+ jq + 1), 1Z⟩] = E(E(mr + ns+ ip+ jq + 1)).

Rewriting the inequality above, we get

[⟨a, b⟩] ·Q [⟨d, c⟩] <Q E(E(mr + ns+ ip+ jq + 1)).

Consequently, since multiplication of positive integers preserves the ordering of the rationals
by Theorem 5QJ (b),

[⟨a, b⟩] ·Q [⟨d, c⟩] ·Q [⟨c, d⟩] <Q E(E(mr + ns+ ip+ jq + 1)) ·Q [⟨c, d⟩]
[⟨a, b⟩] <Q [⟨c, d⟩] ·Q E(E(mr + ns+ ip+ jq + 1))

This is just
r <Q p · E(E(mr + ns+ ip+ jq + 1)).

Wherefore, there indeed exists a k in ω so that r <Q p ·Q E(E(k)); as we have just shown
that mr + ns+ ip+ jq + 1 is one such k.

Q.E.D. ■

2I omit small details like proving that since b and c are positive integers, bc must be positive as well, as it would
frankly be a waste of time.
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19. Assume that p is a positive rational number. Show that for any real number x there is some
rational q in x such that

p+ q /∈ x.

Proof:

Since x is real, we know x ̸= Q. Hence, the proper subset x of Q has an upper bound b in
Q\x: Otherwise, there exists some q ∈ x with b ≤ q but b /∈ x, which either contradicts q ∈ x
or violates the fact that x is closed downwards. Then for any positive rational number p,
b < p+ b. Which means that p+ b /∈ x because all rationals in x are strictly less than b.

Q.E.D. ■

20. Show that for any real number x, we have 0R ≤R |x|.

Proof:

It is clear that for any real numbers x, either x ≥R 0R or x <R 0R — by the trichotomy of
the linear ordering on R (Theorem 5RA). Hence, we consider them casewise:

x ≥R 0: Then, by definition, 0R ⊆ x. It follows that 0R ⊆ x ∪ −x. So, 0R ≤R |x|.
x <R 0R: Thus, since −x is a real number (by Theorem 5RE), we see that

x+R (−x) <R 0R +R (−x) as addition of reals preserves order by Theorem 5RH, so

0R < −x because −x is the additive inverse of x be Theorem 5RF.

Consequently, 0R ⊂ −x, and thereupon, 0R ⊆ x ∪ −x. Which means that 0R ≤R |x|
holds.

Wherefore, in any case, we can conclude that 0R ≤R |x|.

Q.E.D. ■

21. Show that if x <R y, then there is a rational number r with

x <R E(r) <R y.

Proof:

Assume that x <R y. Then, we immediately know that x ⊂ y. In other words there exists
some s in y but not in x. This s must be an upper bound of x, lest there is some q ∈ x with
s < q but s /∈ x — contradicting the fact that x is closed downwards. Since y has no largest
element, s < s′ for some s′ ∈ y. For all q ∈ x, q < s < s′. So, by transitivity, q < s′. Which
shows that s′ /∈ x — otherwise, s′ would be the largest element of x — as well as that
x ⊆ E(s′). Consequently, as s /∈ x but s ∈ E(s′), x ⊂ E(s′). Similarly, by reason of s′ ∈ y;
for any r < s′, r ∈ y by virtue of y being closed downwards. In other words, E(s′) ⊆ y. In
addition, s′ /∈ E(s′). Whence, E(s′) ⊂ y. Subsequently, we see that x ⊂ E(s′) ⊂ y.
Wherefore, we conclude that there indeed exists the rational number s′ with

x <R E(s′) <R y.

Q.E.D. ■

113



22. Assume that x ∈ R. How do we know that |x| ∈ R?

Proof:

Clearly, |x| is a subset of Q by definition. As usual, we need to show the three properties of
real numbers are satisfied, which we will do now:

(a) The real number x is nonempty by definition. So, x ∪ −x must be nonempty as well.
By Theorem 5RA, the linear ordering on R is trichotomous. Thus, x <R 0R, 0R <R x,
or x = 0R is true. We consider them casewise:

□ When x <R 0R, let −s ∈ 0R \ x. At least one such −s exists since 0R ⊂ x.
Consequently, −s < 0 and 0 < s. Which means that for all q ∈ x, q < 0 < s. By
Theorem 5RA, the linear ordering <R is transitive. Therefore, q < s and hence
q ∈ −x. In other words, x ⊆ −x. Combined with the fact that the real number −x
is not Q, it must be that x ∪ −x ̸= Q as well.

□ If 0R <R x, then
0R +R (−x) <R x+R (−x), so

−x <R 0R.

Accordingly, −x ⊂ −(−x) by the previous part. Now, recall that ⟨R,+R, 0R⟩ is an
Abelian group. As such, by PLemma A, −(−x) = x. As a result, −x ⊆ x. Thence,
x ∪ −x ̸= Q because, again, the real number x is not Q.

PLemma A. In any Abelian group ⟨A,+, 0⟩, and for any x ∈ A, x = −(−x).

Proof:

x+ (−x) = 0 by property 3

[x+ (−x)] + [−(−x)] = −(−x) by property 3

x+
(
(−x) + [−(−x)]

)
= −(−x) by property 1

x+ 0 = −(−x) by property 3

x = −(−x) by property 2 ♦

□ Lastly, in the case that x = 0R; we see that 0R +R (−x), meaning −x = 0R. It is
clear that x ∪ −x = 0R ̸= Q.

In any case, ∅ ̸= |x| ⊂ Q.

(b) Assume q ∈ |x| and r < q. Immediately, either q ∈ x or q ∈ −x. Since x and −x are
both real, they are closed downwards. Whence, in both cases, r ∈ |x|. That is, |x| is
also closed downwards.

(c) Finally, we need to prove |x| has no largest element. Again, suppose that q ∈ |x|. By
virtue of the reals x and −x having no largest member, regardless of whether q ∈ x or
q ∈ −x, there exists some r > q that is in the same set as q (i.e. in x or −x).
Accordingly, r ∈ |x| with r > q. Thereupon, |x| has no largest element.

Wherefore, since |x| is a subset of Q satisfying the 3 above properties, it is indeed a real
number.

Q.E.D. ■
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1.4.4 Cardinal Numbers and the Axiom of Choice

Self-Proof of PA ≈ A.

Information provided:

We define a one-to-one function H from PA onto A2 as follows: For any subset B
of A, H(B) is the characteristic function of B, i.e., the function fB from A into 2 for
which

fB(x) =

{
1 if x ∈ B,

0 if x ∈ A−B

Let g ∈ A2 and define the sets D0 = {x ∈ A | g(x) = 0}, and D1 = {x ∈ A | g(x) = 1}. The
sets D0 and D1 are disjoint, lest g(x) = 0 and g(x) = 1 simultaneously, which would violate
the fact that the function g is single-valued. This combined with the fact that D0 ∪D1 = A
— because g has domain A in which g(x) = 0 or g(x) = 1 — means that D0 = A − D1.
Consequently, we can write the mapping of g as

g(x) =

{
1 if x ∈ D1

0 if x ∈ A−D1

Accordingly, we notice that H(D1) = g(x). Hence, H is a surjective function.

Now assume that H(B) = H(B′). Then we immediately see that fB = fB′ are functions
mapping from A into 2 so

fB(x) =

{
1 if x ∈ B,
0 if x ∈ A−B.

}
=

{
1 if x ∈ B′,
0 if x ∈ A−B′.

}
= fB′(x).

Therefore, it is clear that fB(x) = 1 iff fB′(x) = 1; i.e.
{x ∈ A | fB(x) = 1} = {x ∈ A | fB′(x) = 1} since both functions have domain A. However,
by definition, the former is just B, while the latter is simply B′. That is:

B = {x ∈ A | fB(x) = 1} = {x ∈ A | fB′(x) = 1} = B′.

Thence, the function H is injective.

Wherefore, it now follows that H is a bijective function from PA to A2. Which means that
PA ≈ A2.

Self-Proof of Theorem 6A.

(a) Clearly, the identity map IA provides us with such a bijection from A into A. When
a ∈ A, IA(a) = a. Thus, the identity map is surjective. Similarly, if IA(a) = IA(a

′),
then by definition, IA(a) = a and IA(a

′) = a′. Accordingly, a = a′. We conclude that
the identity map is also injective. Whence, A is equinumerous to itself.

(b) Assume that A ≈ B. In other words, there exists a bijection f : A → B. By Theorem
3F, f−1 is a function mapping from B into A because f is injective. Given any a ∈ A,
f(a) exists. Therefore, using Theorem 3G, we have that f−1(f(a)) = a. We see that f−1

is surjective. Again, from the same theorem, for any b and b′ in B such that f(b) = f(b′)
— meaning f(f−1(b)) = f(f−1(b)) — we observe that f(f−1(b)) = b = f(f−1(b′)) = b′.
As a result, f−1 is injective. Thence, f−1 is a bijection fromB into A; B is equinumerous
to A.
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(c) Now let A ≈ B and B ≈ C. Immediately, there must exist some bijection GAB : A→ B

and G̃BC : B → C. Thus, we now construct the bijection GAC : A → C with
GAC(a) = G̃BC(GAB(a)).

Suppose a = a′. Hence, owing to the fact that GAB is a function, GAB(a) = GAB(a
′).

By reason of G̃BC also being a function, G̃BC(GAB(a)) = G̃BC(GAB(a
′)). Conse-

quently, GAC(a) = GAC(a
′). i.e.: GAC is a function.

If c ∈ C, then there is some b ∈ B so c = G̃BC(b) because G̃BC is surjective. Similarly,
as GAB is surjective, b = GAB(a) for some a ∈ A. In sum, there exists an a ∈ A such

that c = G̃BC(GAB(a)). By definition, GAC(a) = c. In other words, subjectivity is

proven. Whenever GAC(a) = GAC(a
′), G̃BC(GAB(a)) = G̃BC(GAB(a

′)) by definition.

Hence, since G̃BC is injective, GAB(a) = GAB(a
′). Repeating this once more, due to

GAB being injective, it must be that a = a′. We see that GAC is injective.

Wherefore, GAC is indeed a bijection from A into C. Which means that A ≈ C.

Self-Proof of Theorem 6B.

(a) (N.A.) Mmm formalising decimals, specifically the part about showing every real num-
ber can be expressed as a decimal seems troublesome so nope. Interestingly, the argu-
ment is almost the same as that of (b).

(b) Assume that the function f maps S into its powerset. And let C be the subset of S so
that x ∈ C iff x /∈ f(x). Now, there either exists some s ∈ S with f(s) = C or there does
not. Consider the case that there exists such a s ∈ S. Then, it follows that s ∈ f(s)
iff s ∈ C. By our construction of C, s ∈ f(s) if and only if s /∈ f(s). However, this is
clearly a contradiction. Consequently, it must be that there does not exist any such s.
In other words, we have constructed a set C in the powerset of S but which is not in
ran f for any function f : S → PS. Thence, showing that any f : S → PS is never
surjective. So, clearly there does not exist a bijection from S into PS. Wherefore, S
is not equinumerous to its powerset.

1. Show that the equation
f(m,n) = 2m(2n+ 1)− 1

defines a one-to-one correspondence between ω × ω and ω.

Proof. There are three criterion we need to check for, namely injectivity, surjectivity and that
f is a (well-defined) function.

Surjectivity:

Let k be a natural number. By exercise 14 of Chapter 4, any natural number is either even or
odd (but never both). Hence, we consider this casewise. First consider the much simpler case
of k being even, which means k = 2n for some natural n. Thus, f(0, n) = 20(2n + 1) − 1 =
2n = k. As for the latter case where k is odd, there is some natural n with k = 2n + 1. In
other words, k + 1 = 2n+ 2 = 2(n+ 1) is even. We now need the following lemma:
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PLemma A. Any nonzero even natural number can be written as 2i(2j+1) for some naturals
i ̸= 0 and j, both less than n.

Proofa. Let T be the set of naturals, n, so that if n is nonzero, then it can be written as
2i(2j + 1). Assume that for all m ∈ n, m ∈ T . If n = 0, n ∈ T immediately holds. Suppose
that n is nonzero. Then, consider n being odd, i.e. it can be written as some 2j + 1. Thus,
2n = 21(2j + 1). When n is even, it is equivalent to some 2m∗. Clearly 1 ∈− m∗ ∈ n. Hence,
2m∗ is expressible as some 2i(2j + 1). Which means that 2n = 2i+1(2j + 1). In any case, we
see that n ∈ T . By the Strong Induction on ω, T = ω.

aWe shall avoid stating “for some naturals...” to avoid unnecessarily cluttering up the proof. It should be
clear to the reader which symbol represents what.

Utilising the above PLemma A, there are some natural numbers i ̸= 0 and j (both less than
n) for which 2n + 2 = 2i(2j + 1). It follows that k = 2n + 1 = 2i(2j + 1) − 1 = f(i, j).
Consequently, irregardless of whether k is even or odd, k is always in the range of f . Which
means that f is surjective.

Injectivity:

Suppose that f(m,n) = f(m′, n′). i.e. 2m(2n + 1) = 2m
′
(2n′ + 1). And that T ′ is the

set of natural numbers m so that for all natural m′, 2m(2n + 1) = 2m
′
(2n′ + 1) implies

m = m′. Starting from m = 0 as usual, we see that 20(2n + 1) = 2m
′
(2n′ + 1) must

mean m = m′, lest m′ ≥ 1 which would mean a natural number is both odd and even
at the same time, contradicting exercise 14 of Chapter 4. Now, presume m ∈ T . Clearly
2m

+

(2n+1) = 2[2m(2n+1)] = 2m
′
(2n′+1) tells us thatm′ ≥ 1, lestm′ = 0; meaning a natural

number is both even (left side) and odd (right side). Creating the same contradiction as above.
Sincem′ ≥ 1, there is a naturalm withm′ = m+. Accordingly, 2[2m(2n+1)] = 2[2m(2n′+1)],
and from the cancellation laws for natural numbers, we notice that 2m(2n+1) = 2m(2n′+1).
By our induction hypothesis, m = m again. In other words, m+ = m′. Thereafter, by the
cancellation laws, it follows that 2n+ 1 = 2n′ + 1, and whence, n = n′. Resultantly, we have
proven the injectivity of f .

Well-Definedness of f :

Lastly, we have the simplest part of our proof. Without pouring over minute details, if
m = m′ and n = n′, then by virtue of addition, multiplication and exponentiation being
functions, we can conclude that 2m(2n+ 1) = 2m

′
(2n′ + 1).

Wherefore, the bijection f defines a one-to-one correspondence between ω × ω and ω.

3. Find a one-to-one correspondence between the open unit interval (0, 1) and R that takes
rationals to rationals and irrationals to irrationals.

Proof. We define the bijection f : (0, 1) → R with

f(x) =

{
1

1−x − 2 if 1
2 ≤ x < 1,

2− 1
x if 0 < x < 1

2 .

By virtue of subtraction and division being functions, we easily see that f must be a function
as we claimed. We now verify that it is injective, surjective, as well as maps rationals to
rationals and irrationals to irrationals.
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Injectivity:

Assume f(x) = f(x′). We first notice that both must be in either
[
1
2 , 1
)
or
(
0, 12

)
. Otherwise,

we can presume (without loss of generality) that 1
2 ≤ x < 1 and 0 < x′ < 1

2 , in which case

1

2
≤ x and x′ <

1

2

1− x ≤ 1

2
2 <

1

x′

0 ≤ 1

1− x
− 2 2− 1

x′
< 0.

Clearly, this would mean that f(x) ̸= f(x′), contradicting our assumption that f(x) = f(x′).
Hence, we only need to consider the two cases below:

1

1− x
− 2 =

1

1− x′
− 2 or 2− 1

x
= 2− 1

x′

1

1− x
=

1

1− x′
1

x′
=

1

x

1− x′ = 1− x x = x′

x = x′

In any case, we see that x = x′. Consequently, f is indeed injective.

Surjectivity:

Let y ∈ R. Then, there are two scenarios possible — either y ≥ 0 or y < 0. For the former,
observe that

y + 2 ≥ 2

1

2
≥ 1

y + 2

− 1

y + 2
≥ −1

2

This means two things:

− 1

y + 2
< 0 and 1− 1

y + 2
≥ 1

2

1− 1

y + 2
< 1

Since y+1
y+2 = 1− 1

y+2 , thus
1
2 ≤ y+1

y+2 < 1. And so;

f

(
y + 1

y + 2

)
=

[
2
(

y+1
y+2

)
− 1
]

[
1−

(
y+1
y+2

)]
=

2(y + 1)− (y + 2)

(y + 2)− (y + 1)

=
2y + 2− y − 2

y + 2− y − 1

=
y

1
= y.
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Similarly for the latter, we find that 2 < 2− y, telling us that

0 < 2− y and
1

2− y
<

1

2

0 <
1

2− y

Accordingly, we have that 0 < 1
2−y <

1
2 . Therefore,

f

(
1

2− y

)
= 2− 1(

1
2−y

)
= 2− (2− y)

= y.

Thence, irregardless of whether y ≥ 0 or y < 0, there exists a x in (0, 1) such that y = f(x).
In other words, f is surjective.

Rationals To Rationals, Irrationals To Irrationals:

We claim that x ∈ (0, 1) is rational iff f(x) is. When p
q ∈ (0, 1) where p and q are integers,

then

f(x) =
1(

1− p
q

) − 2 or f(x) = 2− 1(
p
q

)
=

q

q − p
− 2 = 2− q

p

=
2p− q

q − p
=

2p− q

p

Either way, f(x) is rational, as desired. Conversely, suppose p
q ∈ R for integers p and q. It

follows that (
p
q + 1

)
(

p
q + 2

) =
p+ q

p+ 2q
and

1(
2− p

q

) =
q

2− p
.

Both are easily seen to be rational. From the previous part we know that f maps these to
p
q . As a result, we have shown x ∈ (0, 1) is rational iff f(x) is. Correspondingly, x ∈ (0, 1) is

irrational iff f(x) is immediately holds. That is, f maps rationals to rationals and irrationals
to irrationals.

Wherefore, this function f : (0, 1) → R is indeed the bijection we are looking for, with the
property that it maps rationals to rationals and irrationals to irrationals.

Self-Proof of Corollary 6C. Let S be some finite set and S′ be a proper subset of S. It
follows from definition that there exists a bijection f : S → n for some natural n. Clearly,
ran(f ↾ S′) ⊂ n and S′ ≈ ran(f ↾ S′). By the Pigeonhole Principle, n is not equinumerous
to ran(f ↾ S′) since ran(f ↾ S′) is a proper subset of n. Now utilising the contrapositive of
Theorem 6A (c), it must be that S ̸≈ ran(f ↾ S′) because n ≈ S by definition. Consequently,
using the same theorem a second time, we observe that as S′ ≈ ran(f ↾ S′), S ̸≈ S′ is certainly
true. Hence, the finite set S is not equinumerous to any proper subset S′ of itself.
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Self-Proof of Corollary 6D. (a) Taking the contrapositive of Corollary 6C, we clearly see
that for any set S, if S is equinumerous to a proper subset of itself, then it is infinite.

(b) Let ε be the set of even natural numbers. Then, we see that there exists the bijection
f : ω → ε defined by f(n) = 2n. When f(n) = f(n′), 2n = 2n′, and so, n = n′. Hence,
f is indeed injective. If 2n ∈ ε for some natural n, then immediately, f(n) = 2n. Which
means that f is surjective. Therefore, f bijects ω into ε as desired. Consequently, ω is
equinumerous to ε. Wherefore, by part (a), since ε is a proper subset of ω yet ω ≈ ε
still, ω must be an infinite set.

1.5 Random Stuff

Self-Proof of Theorem 9T. Let S be a set of cardinality κ whose members are sets X of
ordinals, so that

⋃
S = λ. Further suppose without loss of generality that each X ∈ S is

nonempty and pairwise disjoint. By AC, there exists a well-order < on S. Now, define the
lexicographic well-order ⊏ on λ by

αX ⊏ βY iff X < Y or (X = Y & αX ∈ βY ).

We have the usual function E with domain λ given by E(α) = EJsegαK. By the injectivity
of E, λ ∈− EJλK because λ ≼ EJλK. Furthermore since α ∈ λ, we know card(E(α)) =
card(segα) < λ. Thus, E(α) ∈ λ for every α ∈ λ, so EJλK ∈− λ. As such, λ = EJλK.
Now define the function G : S → λ by G(X) =

⋃
Y≤X EJY K. G(X) must never be λ, lest

card(EJXK ∪
⋃

Y <X EJY K) = λ. But since
⋃

Y <X EJY K ⊂ λ, cardEJXK = cardX = λ, a
contradiction. Thence, G(X) ∈ λ for every X ∈ S. We also see that G must be injective
because: If Y ̸= X, we can say wlog that Y < X and that there is some α in X which isn’t in
Y . Accordingly, E(α) ∈ G(X) but E(α) /∈ G(Y ). Hence, G(Y ) ̸= G(X). Lastly, notice that
for any E(α), α ∈ X for someX ∈ S, so E(α) ∈ G(X). As a result, sup ranG = ranE = λ. In
other words, supGJSK is a set of ordinals G(X) less than λ with supremum λ and cardinality
cardS = κ. By the definition of cofinality, cf λ is indeed the least such κ.
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