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Chapter 4

Determinants

§4.3 Properties of Determinants

4.3.1 Exercises

Note 4.1. How do we understand the adjugate matrix and the corresponding the-
orem, that

A−1 =
1

det(A)
adj(A)?

Explaination by Eric Tao.
Let A be an n × n matrix. The adjugate matrix adj(A) is the matrix that ‘does
cofactor expansion on A’. Notice that the cofactor expansion along any ith row is
a linear combination of {Cij | 1 ≤ j ≤ n}. So, by defining [adj(A)]ij = Cji, we have
that

A adj(A) =


det(A) ? ? . . . ?

? det(A) ? . . . ?
...

...
...

. . .
...

? ? ? . . . det(A)

 .

By the exercise below, all our ‘?’s are just zero. Naturally, it follows that

A adj(A) = det(A)I.

Exercise. Let A be an n × n matrix that has nonzero determinant. Explain why,
for i ̸= j,

Aj1Ci1 +Aj2Ci2 + · · ·+AinCjn = 0

Proof. This is the cofactor expansion along the ith row of the matrix A , obtained
from A, by replacing its ith row with its jth row. Since two rows are now equal,
the above cofactor expansion, i.e. det(A ), is zero.

2

https://discord.com/channels/268882317391429632/359052581022203914/1062162394865995837


CHAPTER 4. DETERMINANTS 3

Question from H&K a classmate asked me about.

Exercise. The result of Example 16 suggests that perhaps the matrix

A =


1 1

2 . . . 1
n

1
2

1
3 . . . 1

n+1
...

...
...

1
n

1
n+1 . . . 1

2n+1


is invertible and A−1 has integer entries. Can you prove that?

Exercise 25. Let cjk denote the cofactor of the row j, column k entry of the matrix
A ∈ Mn×n(F).

(a) Prove that if B is the matrix obtained from A by replacing column k by ej ,
then det(B) = cjk.

(b) Show that for 1 ≤ j ≤ n, we have

A


cj1

cj2
...

cjn

 = det(A) · ej .

Hint: Apply Cramer’s rule to Ax = ej .
(c) Deduce that if C is the n× n matrix such that Cij = cji, then

AC = [det(A)]I.

(d) Show that if det(A) ̸= 0, then A−1 = [det(A)]−1C.

Proof.
(a) The cofactor expansion of B along the kth column is just

(−1)j+k det(B̃jk) = (−1)j+k det(Ãjk) = cjk.

(b) Suppose det(A) ̸= 0. By Cramer’s rule and (a), we have that the kth coor-
dinate of x is

xk =
det(B)

det(A)
=

cjk
det(A)

.

If det(A) = 0, then note that the multiplication of the ith row of A with
(cj1 cj2 . . . cjn)

t is the determinant of the matrix A′ whose ith and jth rows
are both identical to the ith row of A. This must evaluate to zero.

Parts (c) and (d) follow easily from (b).
An alternate way to prove this result is presented in Note 4.1 and the associated
exercise.
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Exercise 28. Let y1, y2, . . . , yn be linearly independent functions in C∞. For each
y ∈ C∞, define T (y) ∈ C∞ by

[T (y)](t) = det


y(t) y1(t) y2(t) . . . yn(t)

y′(t) y′1(t) y′2(t) . . . y′n(t)
...

...
...

...
y(n)(t) y

(n)
1 (t) y

(n)
2 (t) . . . y

(n)
n (t)

 .

The preceding determinant is called the Wronskian of y, y1, . . . , yn.
(a) Prove that T : C∞ → C∞ is a linear transformation.
(b) Prove that N(T ) contains span({y1, y2, . . . , yn}).

Proof.
(a) Recall that (ay + z)(k)(t) = ay(k)(t) + z(k)(t) for any scalar a ∈ C, and

functions y, z ∈ C∞. Furthermore, the determinant is a n-linear function.
These facts suffice to show T (ay + z) = aT (y) + T (z).

(b) For any yi, notice that T (yi) has two identical columns, and hence must be
zero. In other words, {y1, y2, . . . , yn} ⊆ N(T ).



Chapter 5

Diagonalization

§5.1 Eigenvalues and Eigenvectors

5.1.1 Theorems

Theorem 5.2. Let A ∈ Mn×n(F). Then, a scalar λ is an eigenvalue of λ if and only
if det(A− λIn) = 0.

Proof. If λ is an eigenvalue of A, then Ax = λx for sone nonzero x ∈ Fn. So,
(A− λIn)x = 0. Hence, det(A− λIn) = 0.
Conversely, when det(A − λIn) = 0, there exists nonzero x ∈ Fn for which (A −
λIn)x = 0. Since Ax = λx, λ is indeed an eigenvalue.

Lemma. Let B be an n × n matrix whose entries are all constants, except for the
first m ≤ n diagonal entries, each of which is some degree 1 polynomial c− t. Then,
det(B) is of degree m.

Proof. When n = 1, the result is trivial. So, assume it is also true of n = k, and
consider n = k + 1. We do cofactor expansion on the first row. For each Ã1j ,
we can rearrange the rows and columns to obtain a matrix such that all m − 1

or m − 2 entries of degree 1 are in the first m − 1 or m − 2 diagonal entries. By
assumption, every det(Ã1j) must now be of degree m−1 (e.g. for j = 1) or m−2.
Hence, det(A) is of degree m.

Theorem 5.3. (Exercise 24) Let A ∈ Mn×n(F).
(a) The characteristic polynomial of A is a polynomial of degree n with leading

coefficient (−1)n.
(b) A has at most n distinct eigenvalues.

Proof.
(a) The case of n = 1 is again apparent. Therefore, we suppose this is true for

5
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n = k, and consider n = k+1. As such, Ã11 is a degree n−1 polynomial with
leading coefficient (−1)n−1. Furthermore the preceding lemma says det(Ã1j)

is of degree n − 2, for all j ̸= 1. Hence, cofactor expansion on the first row
shows that det(A) has degree n and leading coefficient (−1)n.

(b) This is now clear, from theorem 5.2 and the fact that degree n polynomials
have at most n roots.

Question. Why should any m×m matrix A have at most m distinct eigenvalues?
Is it due to the following conjecture?
Eigenvectors corresponding to different eigenvalues are linearly independent.

Proof. Let {λα} be the set of all distinct eigenvalues of A. For each α, let vα be
an eigenvector corresponding to λα. When n = 1, it is clear that {v1} is linearly
independent. Now assume {v1, v2, . . . , vn} is linearly independent. Then, suppose
for contradiction that

vn+1 =

n∑
i=1

aivi.

Then,
n∑

i=1

ai(λn+1 − λi)vi = 0.

By assumption, λn+1 = λi for all 1 ≤ i ≤ n. A contradiction; linear independence
holds.
Therefore, {λα} contains at most m members because of the linear independence
of eigenvectors corresponding to different eigenvalues.

Theorem 5.4. (Exercise 6) Let T be a linear operator on a vector space V , and let
λ be an eigenvalue of T . A vector v ∈ V is an eigenvector of T corresponding to λ

if and only if v ̸= 0 and v ∈ N(T − λI).

Proof. First assume v ∈ V is an eigenvector (corresponding to λ). Then, v ̸= 0

and
([T ]β − λI)[v]β = [(T − λI)(v)]β = 0.

Since the map u
ϕβ→ [u]β is an isomorphism, (T − λI)v = 0.

Question. Let V be a vector space of dimension at least 2 and {v1, v2, . . . , vn} be
a basis for V . Then, is the linear operator T defined by T (vi) = vi+1 (where
n+m := m) an linear transformation without any eigenvectors?

Proof. Notice that T has characteristic polynomial (−t)n. So, λ = 0 is the only
possible eigenvalue. But N(T ) = {0} implies there are no eigenvectors associated
with λ = 0.
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5.1.2 Exercises

Exercise 1. Label the following statements as true or false.
(a) Every linear operator on an n-dimensional vector space has n distinct eigen-

values.
(b) If a real matrix has one eigenvector, then it has an infinite number of eigen-

vectors.
(c) There exists a square matrix with no eigenvectors.
(d) Eigenvalues must be nonzero scalars
(e) Any two eigenvalues are linearly independent.
(f) The sum of two eigenvalues of a linear operator T is also an eigenvalue of T .
(g) Linear operators on infinite-dimensional vectors spaces never have eigenval-

ues.
(h) An n× n matrix A with entries from a field F is similar to a diagonal matrix

if and only if there is a basis for Fn consisting of eigenvectors of A.
(i) Similar matrices always have the same eigenvalues.
(j) Similar matrices always have the same eigenvectors.
(k) The sum of two eigenvectors of an operator T is always an eigenvector of T .

Proof.
(a) False; rotation in R2 has no eigenvalues as seen in page 256. An even sim-

pler example is the zero transformation, which only has a single eigenvalue,
namely zero.

(b) True. Let v be an eigenvector of A, and λ the corresponding eigenvalue.
Then, for all c ∈ R, A(cv) = cλv = λ(cv).

(c) True; rotation in R2 has no eigenvectors as seen in page 256.
(d) False, for consider the zero transformation T0 : R → R. Then, 1 is an eigen-

vector with the corresponding eigenvalue 0, since T (1) = 0 · 1.
(e) True.
(f) False; consider the identity matrix.
(g) False. In fact, the zero transformation in any infinite dimensional vector

space (e.g. P (F)) has the eigenvalue 0.
(h) True. Assume A = Q−1BQ for some diagonal matrix B and invertible matrix

Q. Notice each ei is an eigenvector of B corresponding to the eigenvalue Bii.
Hence, every Q−1ei is an eigenvector of A (corresponding to the eigenvalue
Bii), for

A(Q−1v) = (Q−1BQ)(Q−1v) = λ(Q−1v).

Our answer to a previous question says {Q−1ei | 1 ≤ i ≤ n} is a basis.
Conversely, suppose there exists a basis β = {v1, v2, . . . , vn} consisting of
eigenvectors of A. It follows that

A = Q−1[A]βQ,
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for the diagonal matrix [A]β and the change of coordinate matrix Q that
changes coordinates in the standard ordered basis to β-coordinates.

(i) True, see exercise 13.
(j) False, as shown in (h): Consider any matrices such that A = Q−1BQ. So, v

is an eigenvector of B iff Q−1v is an eigenvector of A.
A specific example. We have the similar matrices

0 −1 −1

0 0 −1

1 2 3

 =

1 1 1

0 1 1

0 0 1


−11 0 0

1 1 0

1 1 1


1 1 1

0 1 1

0 0 1

 .

Notice that1 0 0

1 1 0

1 1 1


0

0

1

 =

0

0

1

 but

0 −1 −1

0 0 −1

1 2 3


0

0

1

 =

−1

−1

3

 .

(k) False; consider the operator T on R2 given by T (ei) = iei. Then, T (e1+e2) =

(1, 2) is not an eigenvector of T .

Exercise 3. For each of the following linear operators T on a vector space V and
ordered bases β, compute [T ]β and determine whether β is a basis consisting of
eigenvectors of T .

(c) V = R3, T

a

b

c

 =

 3a+ 2b− 2c

−4a− 3b+ 2c

−c

, and β =


0

1

1

 ,

 1

−1

0

 ,

1

0

2


.

(e) V = P3(R),

T (a+ bx+ cx2 + dx3) = −d+ (−c+ d)x+ (a+ b− 2c)x2 + (−b+ c− 3d)x3,

and β = {1, 1 + x2, x+ x2, 1− x+ x3}.

Proof.
(c) ✓ Notice that

T

0

1

1

 = −

0

1

1

 , T

 1

−1

0

 =

 1

−1

0

 , and T

1

0

2

 = −

1

0

2

 .

Indeed, we see that β is a basis consisting of eigenvectors of T , since

[T ]β =

−1 0 0

0 1 0

0 0 −1

 .
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(e) × Similarly, we see that
• T (1) = −1 + (1 + x2),
• T (1 + x2) = −(1 + x2) + (1− x+ x3),
• T (x+ x2) = −(x+ x2),
• T (1− x+ x3) = (1 + x2)− (x+ x2)− 2(1− x+ x3).

Therefore, β is not a basis consisting of eigenvectors of T , as

[T ]β =


−1 0 0 0

1 −1 0 1

0 0 −1 −1

0 1 0 −2

 .

Careless mistake: T (1− x+ x3) = −(1− x+ x3). Other than that, the rest of the
answer is fine!

Exercise 4. For each of the following matrices A ∈ Mn×n(F),
(i) Determine all the eigenvalues of A.
(ii) For each eigenvalue λ of A, find the set of eigenvectors corresponding to λ.
(iii) If possible, find a basis for Fn consisting of eigenvectors of A.
(iv) If successful in finding such a basis, determine an invertible matrix Q and a

diagonal matrix D such that Q−1AQ = D.

(a) A =

(
1 2

3 2

)
for F = R.

Proof.
(a) ✓ We compute that the characteristic polynomial of A is (t+ 1)(t− 4). So,

the eigenvalues of A are −1 and 4, with corresponding eigenspaces

E−1 =

{
t

(
1

−1

)∣∣∣∣∣ t ∈ R

}
and E4 =

{
t

(
2

3

)∣∣∣∣∣ t ∈ R

}
.

Thus, a basis for Fn is clearly

β =

{(
1

−1

)
,

(
2

3

)}
.

Now, we have that

1

5

(
3 −2

1 1

)(
1 2

3 2

)(
1 2

−1 3

)
=

(
−1 0

0 4

)
.
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Exercise 5. For each linear operator T on V , find the eigenvalues of T and an
ordered basis β for V such that [T ]β is a diagonal matrix.

(i) V = M2×2(R) and T

(
a b

c d

)
=

(
c d

a b

)
.

(j) V = M2×2(R) and T (A) = At + 2 · tr(A) · I2.

Proof.
(i) ✓ Let the basis γ := {E11, E21, E12, E22}. So,

[T ]γ =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .

Accordingly, we compute the characteristic polynomial to be (t−1)2(t+1)2.
i.e. the eigenvalues are 1 and −1. Now, we notice that

1. [T ]γ

(
1 1 0 0

)t
=
(
1 1 0 0

)t
,

2. [T ]γ

(
0 0 1 1

)t
=
(
0 0 1 1

)t
,

3. [T ]γ

(
1 −1 0 0

)t
= −

(
1 −1 0 0

)t
,

4. [T ]γ

(
0 0 1 −1

)t
= −

(
0 0 1 −1

)t
.

Therefore, we obtain the basis

β := {E11 + E21, E12 + E22, E11 − E21, E12 − E22},

such that

[T ]β =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


is a diagonal matrix.

(j) ✓ Similarly, we first notice

[T ]β =


3 0 0 2

0 0 1 0

0 1 0 0

2 0 0 3

 .

Again, we compute the characteristic polynomial. This time it is (t− 5)(t−
1)2(t+ 1). i.e. the eigenvalues are 5, 1, and −1. Furthermore,

1. [T ]β

(
1 0 0 1

)t
= 5

(
1 0 0 1

)t
,

2. [T ]β

(
1 0 0 −1

)t
=
(
1 0 0 −1

)t
,

3. [T ]β

(
0 1 1 0

)t
=
(
0 1 1 0

)t
,
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4. [T ]β

(
0 1 −1 0

)t
= −

(
0 1 −1 0

)t
.

As such, we have the basis

α := {E11 + E22, E11 − E22, E21 + E12, E21 − E12}.

Indeed, the matrix representation of T in the basis α is diagonal. In fact,

[T ]α =


5 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .

Exercise 9.
(a) Prove that a linear operator T on a finite dimensional vector space is invertible

if and only if zero is not an eigenvalue of T .
(b) Let T be an invertible linear operator. Prove that a scalar λ is an eigenvalue

of T if and only if λ−1 is an eigenvalue of T−1.
(c) State and prove results analogous to (a) and (b) for matrices.

Proof.
(a) Notice that T is invertible iff nullity(T ) = 0 iff zero is not an eigenvalue of

T .
(b) A scalar λ is an eigenvalue of T iff T (u) = λu for some vector u iff T−1(u) =

λ−1u iff λ−1 is an eigenvalue of T−1.
(c) This translates easily for any matrix A by taking T = LA.

Exercise 10. Prove that the eigenvalues of an upper triangular matrix M are the
diagonal entries of M .

Proof. The characteristic polynomial of the n× n upper triangular matrix, M , is
(A11 − t)(A22 − t) . . . (Ann − t). Its roots, i.e. the eigenvalues of M , are hence the
diagonal entries of M .

Exercise 12. A scalar matrix is a square matrix of the form λI for some scalar λ;
that is, a scalar matrix is a diagonal matrix in which all the diagonal entries are
equal.

(a) Prove that if a square matrix A is similar to a matrix λI, then A = λI.
(b) Show that a diagonalizable matrix having only one eigenvalue is a scalar

matrix.
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(c) Prove that

(
1 1

0 1

)
is not diagonalizable.

Proof. (a) Let A be similar to λI. Then for some invertible matrix Q,

A = Q−1(λI)Q = λI.

(b) Suppose A is diagonalizable with only one eigenvalue, λ. Let the standard
ordered basis be β. Then, [LA]γ = λI for some basis γ. Clearly, [LA]γ is
similar to A = [LA]β . Therefore, A = λI by (a).

(c) Its characteristic polynomial has exactly one root, 1. So from (b), since it is
not a scalar matrix, it can’t be diagonalizable.

Exercise 13.
(a) Prove that similar matrices have the same characteristic polynomial.
(b) Show that the definition of the characteristic polynomial of a linear operator

on a finite-dimensional vector space V is independent of the choice of basis
for V .

Proof.
(a) Let A and Q be n× n matrices, such that Q is invertible. Then,

det(Q−1AQ− tIn) = det(Q−1) det(A− tIn) det(Q) = det(A− tIn).

Hence, the characteristic polynomials of Q−1AQ and A are identical.
(b) Let T : V → V be a linear transformation, and Q be the change of coordinate

matrix that changes β-coordinates into γ-coordinates, i.e. [IV ]
γ
β . Then, [T ]β

is similar to [T ]γ because

[T ]β = Q−1[T ]γQ.

By (a), their characteristic polynomials are identical.

Exercise 15. For any square matrix A, prove that A and At have the same char-
acteristic polynomial (and hence the same eigenvalues). Visit goo.gl/7Qss2u for a
solution.

Proof. The characteristic polynomials of A and At are identical, since

det(A− tI) = det(A− tI)t = det(At − tI).

https://media.pearsoncmg.com/aw/aw_friedberg_linearalgebra_5e/solutions/sec_5_1.html
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Exercise 16.
(a) Let T be a linear operator on a vector space V , and let x be an eigenvector of

T corresponding to the eigenvalue λ. For any positive integer m, prove that
x is an eigenvector of Tm corresponding to the eigenvalue λm.

(b) State and prove the analogous result for matrices.

Proof.
(a) Notice that Tm(x) = λTm−1(x) = · · · = λmT (x).
(b) Let A be an n× n matrix with Ax = λx. Then, for any positive integer m,

we have Amx = λAm−1x = · · · = λmx.

Exercise 17. Let T be a linear operator on a finite-dimensional vector space V , and
c be any scalar.

(a) Determine the relationship between the eigenvectors of T (if any) and the
eigenvalues and eigenvectors of U = T − cI.
Justify your answers.

(b) Prove that T is diagonalizable if and only if U is diagonalizable.

Proof.
(a) Notice that U(x) = λx iff T (x) = (c+λ)x. Hence, the eigenvectors of U and

T are identical. But, the corresponding eigenvalues differ by the scalar c.
(b) Follows immediately from (a) (using theorem 5.1).

Exercise 18. Let T be the linear operator on Mn×n(R) defined by T (A) = At.
(a) Show that ±1 are the only eigenvalues of T .
(b) Describe the eigenvectors corresponding to each eigenvalue of T .
(c) Find an ordered basis β for M2×2(R) such that [T ]β is a diagonal matrix.
(d) Find an ordered basis β for Mn×n(R) such that [T ]β is a diagonal matrix for

n > 2.

Proof.
(a) We notice that T (A) = λA iff At = λA. Let J ∈ Mn×n(R) be zero everywhere

except J12 = −1 and J21 = −1. It is clear that ±1 are eigenvalues of T (when
n ≥ 2), since

T (I) = I and T (J) = −J.

Now consider an eigenvector A of T corresponding to the eigenvalue λ, that is
nonzero in some (i, j)th entry. Then, A = T 2(A) = λ2A implies (1−λ2)Aij =

0. Indeed, λ must be ±1.
(b) The eigenvectors corresponding to the eigenvalues ±1 are symmetric and

skew-symmetric, respectively.
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(c) Consider

β =

{(
1 0

0 0

)
,

(
0 0

0 1

)
,

(
1 1

1 1

)
,

(
0 1

−1 0

)}
.

Notice that(
1 1

1 1

)
−
(
1 0

0 0

)
−
(
0 0

0 1

)
−
(

0 1

−1 0

)
= 2

(
0 1

0 0

)
,

and similarly, (
0 1

0 0

)
−
(

0 1

−1 0

)
=

(
0 0

1 0

)
.

It is clear that β is a basis for V . Moreover, [T ]β is the diagonal matrix
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .

This is because

1. T

(
1 0

0 0

)
=

(
1 0

0 0

)
, 2. T

(
0 0

0 1

)
=

(
0 0

0 1

)
,

3. T

(
1 1

1 1

)
=

(
1 1

1 1

)
, 4. T

(
0 1

−1 0

)
= −

(
0 1

−1 0

)
.

(d) Consider the n× n matrices Aij and Bij , which are zero everywhere except
for Aij

ij = 1 and Aij
ji = −1; as well as Bij

ij = Bij
ji = 1. Then the set of all such

matrices, namely

β = {Aij | 1 ≤ i < j ≤ n} ∪ {Bij | 1 ≤ i ≤ j ≤ n},

is a basis of purely eigenvectors for Mn×n(R).
Notice that Eii = Bii. Even if i < j, we see that Aij + Bij = 2Eij and
−Aij +Bij = 2Eji. Since β contains all Eij and has n2 members, it indeed
is a basis for Mn×n(R).
Furthermore,

T (Aij) = −Aij and T (Bij) = Bij .

So β contains only eigenvectors, as claimed. i.e. [T ]β is diagonal.

Exercise 19. Let A,B ∈ Mn×n(C).
(a) Prove that if B is invertible, then there exists a scalar c ∈ C such that A+cB
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is not invertible.
(b) Find nonzero 2 × 2 matrices A and B such that both A and A + cB are

invertible for all c ∈ C.

Proof.
(a) By the fundamental theorem of algebra, there exists −c ∈ C for which

det(AB−1 + cI) = 0. Hence, det(A+ cB) = 0 as det(B) ̸= 0.
(b) Let A = B = I. Then, A−1 = I and (A+ cB)−1 = (c+ 1)−1I.

Exercise 20. Let A be an n× n matrix with characteristic polynomial

f(t) = (−1)ntn + an−1t
n−1 + · · ·+ a1t+ a0.

Prove that f(0) = a0 = det(A). Deduce that A is invertible if and only if a0 ̸= 0.

Proof. Notice that a0 = f(0) = det(A − 0 · I) = det(A) as claimed. So, A is
invertible (iff det(A) ̸= 0) iff a0 ̸= 0.

Exercise 22.
(a) Let T be a linear operator on a vector space V over the field F, and let g(t)

be a polynomial with coefficients from F. Prove that x is an eigenvector of
T with corresponding eigenvalue λ, then g(T )(x) = g(λ)x. That is, x is an
eigenvector of g(T ) with corresponding eigenvalue g(λ).

(b) State and prove a comparable result for matrices.
(c) Verify (b) for the matrix A in Exercise 4(a) with polynomial g(t) = 2t2−t+1,

eigenvector x = (2, 3)t, and corresponding eigenvalue λ = 4.

Proof.
(a) Let g(t) =

∑n
i=0 ait

i. Then, we see that

g(T )(x) =

n∑
i=0

aiT
i(x) =

n∑
i=0

aiλ
ix = g(λ)x.

(b) Indeed, x is an eigenvector of A with corresponding eigenvalue λ = 4, because

Ax =

(
8

12

)
= 4

(
2

4

)
.

Furthermore, (b) holds as expected, for

g(A)

(
2

3

)
=

(
14 10

15 19

)(
2

3

)
= 29

(
2

3

)
= g(4)

(
2

3

)
.
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Exercise 23. Use Exercise 22 to prove that if f(t) is the characteristic polynomial of
a diagonalizable linear operator T , then f(T ) = T0, the zero operator. (In section
5.4 we prove that this result does not depend on the diagonalizability of T .)

Proof. Let f(t) be a characteristic polynomial of a diagonalizable linear operator
T . Then, there are eigenvectors vi with corresponding eigenvalues λi that form a
basis β := {v1, v2, . . . , vn}, for which [T ]β is diagonal. Since f(T )(vi) = 0 for each
i, we have f(T ) = T0.

Exercise 25. Determine the number of distinct characteristic polynomials of matri-
ces in M2×2(Z2).

Proof. × There are six distinct polynomials, since there are six diagonal entries.
Let e, f ∈ Z2. We see that the characteristic polynomials of

(a)

(
0 e

f 0

)
, (b)

(
1 e

f 0

)
, (c)

(
1 e

f 1

)
,

are, respectively,
(a) t2 or t2 − 1, (b) t(t− 1) or t(t− 1)− 1, (c) (1− t)2 or (1− t)2 − 1.

The above is wrong. We see that there are only four such polynomials, because
(1− t)2 − 1 = t2 − 1 and (1− t)2 − 1 = t2 − 2t = t2.

§5.2 Diagonalizability

5.2.1 Theorems

Theorem 5.6. The characteristic polynomial of any diagonalizable linear operator
on a vector space V over a field F splits over F.

Proof. Let T be a diagonalizable linear operator on an n-dimensional vector space
V . Then, there is a basis β for which A = [T ]β is diagonal. As such, the charac-
teristic polynomial of T is just

(−1)n(t−A11)(t−A22) . . . (t−Ann).

Lemma. For any A be an n×n matrix whose first i ≤ n diagonal entries are λ, we
have that (λ− t)n is a factor of the characteristic polynomial of A.

Proof. This is trivial for n = 1. So suppose it is true for n = k and consider
n = k + 1. For each ˜(A− tI)1j with j > 1, shift the rows below the jth row up
by one (and the jth row to the nth row). Now, the first i− 1 diagonal entries are
λ− t. As such, every (λ− t)i+1 is a factor of each c1j . Hence it is also a factor of
the characteristic polynomial of A.
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Theorem 5.7. Let T be a linear operator on a finite-dimensional vector space V ,
and let λ be an eigenvalue of T having multiplicity m. Then, 1 ≤ dim(Eλ) ≤ m.

Proof. Let n := dim(V ), β := {v1, v2, . . . , vi} be a basis for Eλ, and γ :=

{v1, v2, . . . , vn} be an extension of β to a basis for V . By the above lemma, (λ− t)i

is a factor of characteristic polynomial of [T ]γ .

Theorem 5.8. Let T be a linear operator on a finite-dimensional vector space such
that the characteristic polynomial splits. Let λ1, λ2, . . . , λk be the distinct eigen-
values of T . Then,

(a) T is diagonalizable if and only if the multiplicity of λi is equal to dim(Eλi
)

for all i.
(b) If T is diagonalizable and βi is an ordered basis for Eλi

for each i, then
β = β1 ∪ β2 ∪ · · · ∪ βk is an ordered basis for V consisting of eigenvectors of
T .

Proof. Let mb be the multiplicity of λb and assume T is diagonalizable. So [T ]β is
diagonal for some basis

β := {vab | 1 ≤ a ≤ k, 1 ≤ b ≤ mb}.

Suppose that for some T (x) = λix and scalars cab, we have

x =
∑
a, b

cabvab.

By theorem 5.5, x =
∑

b cibvib. That is, {vib | 1 ≤ b ≤ mi} spans Eλi
. By theorem

5.7, mi = dim(Eλi
).

Conversely, consider when dim(Eλb
) = mb for all b. Since the characteristic poly-

nomial of T splits,
∑

mb = dim(V ). Furthermore, there is a basis βb for each Eλb
.

Thus by theorem 5.5, β must be a basis for V for which [T ]β is diagonal.

Theorem 5.9. Let W1,W2, . . . ,Wk be subspaces of a finite-dimensional vector space
V . The following conditions are equivalent.

(a) V = W1 ⊕W2 ⊕ · · · ⊕Wk.
(b) V =

∑k
i=1Wi and, for any vectors v1, v2, . . . , vk such that vi ∈ Wi (1 ≤ i ≤ k),

if v1 + v2 + · · ·+ vk = 0, then vi = 0 for all i.
(c) Each vector v ∈ V can be uniquely written as v = v1 + v2 + · · · + vk, where

vi ∈ Wi.
(d) If γi is an ordered basis for Wi (1 ≤ i ≤ k), then γ1∪γ2∪· · ·∪γk is an ordered

basis for V .
(e) For each i = 1, 2, . . . , k, there exists an ordered basis γi for Wi such that

γ1 ∪ γ2 ∪ . . . γk is an ordered basis for V .
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Proof.
• Assume (b) does not hold, i.e. there exists k nonzero vectors vi ∈ Wi for

which v1 + v2 + · · · + vk = 0. Then, v1 ∈ W2 +W3 + · · · +Wk. Thus (a) is
false.

• Now suppose (b) holds and

v1 + v2 + · · ·+ vk = u1 + u2 + · · ·+ vk.

for some vi, ui ∈ Wi. Therefore, ui − vi = 0 for all i. Accordingly, (c) holds.
• Consider when (c) holds and let γi be an ordered basis for Wi. To avoid a

contradiction with the uniqueness asserted by (c), linear independence of γ
must hold. Clearly, (d) is true.

• Presume (d) is valid. It is a straightforward task to find ordered bases for
Wi. So, (e) follows from (d).
(Either use the result that every vectors space has a basis. Or, if we desire
a Choiceless proof, for each i we pick uj ∈ Wi − span{u1, u2, . . . , uj−1}.
This procedure must terminate at j = n := dim(Wi). Then, we take γi =

{u1, u2, . . . , un}.)
• Finally, when (e) is true, (a) follows trivially.

Theorem 5.10. A linear operator T on a finite-dimensional vector space V is diag-
onalizable if and only if V is the direct sum of the eigenspaces of T

Proof. If T is diagonalizable, theorem 5.8 tells us the sum of all eigenspaces is V .
Moreover, theorem 5.5 guarantees condition (b) of the preceding theorem.
Conversely, consider when V is the direct sum of the eigenspaces of T . Hence the
sum of the dimensions of all eigenspaces must be dim(V ). From theorem 5.7, we
deduce that the dimension of each eigenspace is identical to the multiplicity of the
corresponding eigenvalue.

5.2.2 Exercises

Exercise 1. Label the following statements as true or false.
(a) Any linear operator on an n-dimensional vector space that has fewer than n

distinct eigenvalues is not diagonalizable.
(b) Two distinct eigenvectors corresponding to the same eigenvalue are always

linearly dependent.
(c) If λ is an eigenvalue of a linear operator T , then each vector in Eλ is an

eigenvector of T .
(d) If λ1 and λ2 are distinct eigenvalues of linear operator T , then Eλ1∩Eλ2 = {0}.
(e) Let A ∈ Mn×n(F) and β = {v1, v2, . . . , vn} be an ordered basis for Fn con-

sisting of eigenvectors of A. If Q is the n× n matrix whose jth column is vj
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(1 ≤ j ≤ n), then Q−1AQ is a diagonal matrix.
(f) A linear operator T on a finite-dimensional vector space is diagonalizable if

and only if the multiplicity of each eigenvalue λ equals the dimension of Eλ.
(g) Every diagonalizable linear operator on a nonzero vector space has at least

one eigenvalue.
The following two items relate to the optional subsection on direct sums

(h) If a vector space is the direct sum of subspaces W1,W2, . . . ,Wk, then Wi ∩
Wj = {0} for i ̸= j.

(i) If

V =
k∑

i=1

Wi and Wi ∩Wj = {0} for i ̸= j,

then V = W1 ⊕W2 ⊕ · · · ⊕Wk.

Proof.
(a) True; this is the contrapositive of theorem 5.6.
(b) False. This is true iff the dimension of the eigenspace corresponding to that

eigenvalue is one.
(c) True by definition.
(d) True from theorem 5.10.
(e) True. In this case, Q = [I]αβ where α is the standard ordered basis of Fn. So,

[LA]β = Q−1AQ is a diagonal matrix.
(f) True, see theorem 5.8.
(g) True, by definition.
(h) True, follows trivially from definition.
(i) False. Consider the vector space R3 and the subspaces W1 = span{(0, 0, 1)},

W2 = span{(1, 0, 0)}, W3 = span{(1, 1, 0)}, and W4 = span{(1, 1, 1)}. Then,
V = W1 +W2 +W3 +W4 and pairwise disjointness must hold for the Wi’s.
But the sum of the dimensions of the Wi’s is 4 > 3 = dim(R3).
Alternatively, notice (1, 1, 1)− (1, 1, 0) = (0, 0, 1) ∈ W1 ∩ (W2 +W3 +W4).

Exercise 7. For

A =

(
1 4

2 3

)
∈ M2×2(R),

find an expression for An, where n is an arbitrary positive integer.

Proof. Computing the characteristic polynomial of A gives (t + 1)(t − 4). Notice
that A(−2 1)t = −(−2 1)t and A(1 1)t = 5(1 1)t. Hence, β := {(−2 1)t, (1 1)t} is
a basis for R2. As such,(

−1 0

0 5

)
=

1

3

(
−1 1

1 2

)(
1 4

2 3

)(
−2 1

1 1

)
.
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Therefore,

An =
1

3

(
−2 1

1 1

)(
(−1)n 0

0 5n

)(
−1 1

1 2

)

=
1

3

(
2(−1)n + 5n −2(−1)n + 2(5n)

−(−1)n + 5n (−1)n + 2(5n)

)
.

Exercise 9. Let T be a linear operator on a finite-dimensional vector space V , and
suppose there exists an ordered basis β for V such that [T ]β is an upper triangular
matrix.

(a) Prove that the characteristic polynomial for T splits.
(b) State and prove an analogous result for matrices.

The converse of (a) is treated in exercise 12(b).

Proof. Notice that the characteristic polynomial of A is

(B11 − t)(B22 − t) . . . (Bnn − t),

for some upper triangular matrix B which is similar to A.

Exercise 11. Let A be an n×n matrix that is similar to an upper triangular matrix
and has the distinct eigenvalues λ1, λ2, . . . , λk with corresponding multiplicities
m1,m2, . . . ,mk. Prove the following statements.

(a) tr(A) =
∑k

i=1miλi

(b) det(A) = (λ1)
m1(λ2)

m2 . . . (λk)
mk .

Proof. This is clear from A being upper triangularizable.

Exercise 12.
(a) Prove that if A ∈ Mn×n(F) and the characteristic polynomial of A splits,

then A is similar to an upper triangular matrix. (This proves the converse of
exercise 9(b).)

(b) Prove the converse of exercise 9(a).
Visit https://goo.gl/gJSjRU for a solution.

Proof.
(a) We claim that, for each 0 ≤ m ≤ n, there is a basis

β = {v1, v2, . . . , vm, em+1, em+2, . . . , en}

such that ([LA]β)ij = 0, for 1 ≤ i ≤ j ≤ m.
The case that m = 1 is clear. So, suppose this is true for m and consider

https://media.pearsoncmg.com/aw/aw_friedberg_linearalgebra_5e/solutions/sec_5_2.html
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m+ 1.

Question. Are there upper triangular matrices that are non-diagonalizable?

Proof. Yes, consider the upper triangular matrix

(
1 5

0 1

)
. Its only eigenvalue is 1

and the corresponding eigenspace is of dimension 1, as

(
0 5

0 0

)
is of rank 1.

Question. Is an upper triangular matrix A ∈ Mn×n(F) always similar to a lower
triangular matrix?

Proof. Yes; for the ordered bases β = {e1, e2, . . . , en} and γ = {en, en−1, . . . , e1},
we have the lower triangular matrix

[LA]γ = [I]γβA[I]βγ

whose ith column is (An, n+1−i An−1, n+1−i . . . A1, n+1−i)
t.

Question. Is an upper triangular matrix A ∈ Mn×n(F) always similar to its trans-
pose?

Question. Let A ∈ Mn×n(F) and the linear operator G : Mn×n(F) → Mn×n(F) be
bijective. Is A always similar to G(A)? What if we remove the condition that G is
linear?

Question. Let A ∈ Mn×n(F). Is cA similar to it for each scalar c ∈ F?

Exercise 13. Let T be an invertible linear operator on a finite-dimensional vector
space V .

(a) Recall that for any eigenvalue λ of T , λ−1 is an eigenvalue of T−1 (exercise
9 of section 5.1). Prove that the eigenspace of T corresponding to λ is the
same as the eigenspace of T−1 corresponding to λ−1.

(b) Prove that if T is diagonalizable, then T−1 is diagonalizable.

Proof.
(a) It was shown in exercise 9 (of section 5.1), that u ∈ V is an eigenvalue of T

iff it is an eigenvalue of T−1. Thus, the desired result follows trivially.
(b) This is immediate from (a).
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Exercise 14. Let A ∈ Mn×n(F). Recall from exercise 15 of section 5.1 that A and
At have the same characteristic polynomial and hence share the same eigenvalues
with the same multiplicities. For any eigenvalue λ of A and At, let Eλ and E′

λ

denote the corresponding eigenspaces for A and At, respectively.
(a) Show by way of example that for a given common eigenvalue, these two

eigenspaces need not be the same.
(b) Prove that for any eigenvalue λ, dim(Eλ) = dim(E′

λ).
(c) Prove that if A is diagonalizable, then At is also diagonalizable.

Proof.
(a) Consider the field R, and the matrix

A =

(
0 1

0 0

)
.

The eigenspace for A is {
t

(
1

0

)∣∣∣∣∣ t ∈ R

}
,

while for At, it is {
t

(
0

1

)∣∣∣∣∣ t ∈ R

}
.

(b) This is immediate from rank(A− λI) = rank(A− λI)t = rank(At − λI).
(c) This is trivial since we know (b) is true.

Exercise 16. Let

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann


be the coefficient matrix of the system of differential equations

x′1 = a11x1 + a12x2 + · · ·+ a1nxn

x′2 = a21x1 + a22x2 + · · ·+ a2nxn

...

x′n = an1x1 + an2x2 + · · ·+ annxn

Suppose that A diagonalizable and that the distinct eigenvalues of A are
λ1, λ2, . . . , λk. Prove that a differentiable function x : R → Rn is a solution to
the system if and only if x is of the form

x(t) = eλ1tz1 + eλ2tz2 + · · ·+ eλktzk,



CHAPTER 5. DIAGONALIZATION 23

where zi ∈ Eλi
for i = 1, 2, . . . , k. Use this result to prove that the set of solutions

to the system is an n-dimensional real vector space.

Proof. Let β be the standard ordered basis and γ a basis of eigenvectors

v1, v2, . . . , vm1 , vm1+1, . . . , vn.

Thus, for Q = [I]βγ , we have D := Q−1AQ. By exercise 17, the system Ax = x′

is equivalent to D(Q−1x) = (Q−1x)′. Accordingly, let Q−1x = (y1 y2 . . . yn)
t so

yi = cie
λit. Therefore, for any scalars ci ∈ C,

x(t) =
n∑

i=1

cie
λitvi

is a solution.
(It is clear that the solution space is Rn. Furthermore, the zj ’s can obviously be
obtained by taking zj =

∑mj+1−1
i=mj

civi.)

Exercise 17. Let C ∈ Mm×n(R), and let Y be an n× p matrix of all differentiable
functions. Prove (CY )′ = CY ′, where (Y ′)ij = Y ′

ij for all i, j.

Proof. This is clear by basic rules of differentiation, since

((CY )′)ij =

(
n∑

k=1

CikYkj

)′

=
n∑

k=1

CikY
′
kj = C(Y ′)ij = (C(Y ′))ij .

Exercise 19.
(a) Prove that if T and U are simultaneously diagonalizable operators, then T

and U commute (i.e., TU = UT ).
(b) Show that if A and B are simultaneously diagonalizable matrices, then A and

B commute.
The converses of (a) and (b) are established in exercise 25 of section 5.4.

Proof. Let β be a basis for V , such that A := [T ]β and B := [U ]β are diagonal.
Notice that

(AB)ii = ([TU ]β)ij = AiiBii = BiiAii = ([UT ]β)ij = (BA)ii.

Since AB and BA are zero everywhere else, AB = BA. Recall that

H = ϕ−1
β ◦ L[H]β ◦ ϕβ,

for any linear transformation H : V → V . As such, TU = UT .
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Exercise 20. Let T be a diagonalizable linear operator on a finite-dimensional vector
space, and let m be any positive integer. Prove that T and Tm are simultaneously
diagonalizable.

Proof. Let D, A, and Q be matrices such that D is diagonal and

D = Q−1AQ.

Therefore,
An = QDnQ−1.

It is thus apparent that Tm is also diagonalizable.

§5.4 Invariant Subspaces and The
Cayley-Hamilton-Frobenius Theorem

5.4.1 Theorems

Theorem 5.20. Let T be a linear operator on a finite-dimensional vector space V ,
and let W be a T -invariant subspace of V . Then, the characteristic polynomial of
TW divides the characteristic polynomial of T .
Hint. Block matrices.

Proof. Let β := {v1, v2, . . . , vn} be a basis for W , and γ := {v1, v2, . . . , vm} an
extension of β to a basis for V . Further define the n × (m − n) matrix A and
(m − n) × (m − n) matrix B by Aij := ([T ]γ)i,n+j and Bij := ([T ]γ)n+i,n+j . We
see that

[T ]γ − tIm =

(
[TW ]β A

O B

)
− tIm =

(
[TW ]β − tIn A

O B − tIm−n

)
.

So, the characteristic polynomial of T is

det ([TW ]β − tIn) det(B − tIm−n).

(exercise 21 of section 4.3)

Theorem 5.21. Let T be a linear operator on a finite-dimensional vector space V ,
and let W denote the T -cyclic subspace of V generated by a nonzero v ∈ V . Let
k = dim(W ). Then

(a) {v, T (v), T 2(v), . . . , T k−1(v)} is a basis for W .
(b) If a0v + a1T (v) + · · · + ak−1T

k−1(v) + T k(v) = 0, then the characteristic
polynomial of TW is f(t) = (−1)k

(
a0 + a1t+ · · ·+ ak−1t

k−1 + tk
)
.
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Proof.
(a) Let n be the least natural number, such that Tn(v) is a linear combination

of β := {v, T (v), T 2(v), . . . , Tn−1(v)}. Clearly, β is a basis for W , so k = n.
(b) We see that

[TW ]β =


0 0 · · · 0 −a0

−a1
...

−ak−1

Ik−1


So, for each 0 ≤ n ≤ k, let the n× n matrix

An :=



−t 0 0 · · · −an

1 −t 0 · · · −an+1

0 1 −t · · · −an+2

...
...

. . . . . .
...

0 0 · · · 1 −ak−1 − t


Now, by cofactor expansion along the first row, the characteristic polynomial
f(t) of TW is

det(A0) = −tdet(A1) + (−1)1+k(−a0) det(Ik−1)

= −t
[
−tdet(A2) + (−1)k(−a1)

]
+ (−1)ka0

= (−t)2
[
−tdet(A3) + (−1)k−1(−a2)

]
+ (−1)k(a0 + a1t)

...

= (−t)k−2
(
−t det(Ak) + (−1)1+2ak−2

)
+(−1)k

(
a0 + a1t+ · · ·+ ak−3t

k−3
)

= (−1)k
(
a0 + a1t+ · · ·+ ak−1t

k−1 + tk
)
.

Question. Is T k(v) always equal to v? When does equality hold?

Proof. No, consider the zero transformation T0 : R → R. Then, T 2
0 (1) = 0 despite

{
1, T0(1), T

2
0 (1), . . .

}
= {1, T0(1)} = {1, 0}.

Equality holds iff TW is invertible. If T k(v) = v, then T−1
W = T k−1

W , i.e. TW is
invertible. But the converse isn’t true in general (?)

Question. Let W be a T -cyclic subspace of V . Does W always contain a ‘loop’?
That is, is there always a subset L := {u, T (u), T 2(u), . . . } of W whose span is
T -invariant?
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Theorem 5.22 (Cayley-Hamilton-Frobenius). Let T be a linear operator on a finite
dimensional vector space V , and let f(t) be the characteristic polynomial of T .
Then f(T ) = T0, the zero transformation. That is, T “satisfies” its characteristic
equation.

Proof. ✓ Let v ∈ V − E and W be the T -cyclic subspace of V generated by v.
By the preceding theorem 5.21, the characteristic polynomial g(t) of TW is such
that g(T )(v) = 0. Now, f(T )(v) = 0 follows from theorem 5.20. Consequently,
f(T ) = T0.

A longer proof can be found in my VSCode comments. But I find the level of brevity
here to be adequate. That aside, the following result is from the book.

Corollary (Cayley-Hamilton-Frobenius Theorem for Matrices). Let A be an n × n

matrix, and let f(t) be the characteristic polynomial of A. Then, f(A) = O, the
n× n zero matrix.

Proof. By the Cayley-Hamilton-Frobenius theorem, Lf(A) = f(LA) = LO. So,
f(A) = O.

Question. Is it always true that LA = LB implies A = B?

Proof. Yes, let T : V → W be a linear transformation and fix some (ordered) bases
β and γ of V and W , respectively. Notice that the matrix representation of T in
the ordered bases β and γ is unique (because the representation of any vector, with
respect to a fixed basis, is unique).

Question. Let T be a linear operator, on a finite dimensional vector space V , whose
characteristic polynomial is f . Suppose the polynomial g is such that g(T ) = T0.
Then, must f divide g?

Theorem 5.23. Let T be a linear operator on a finite-dimensional vector space V ,
and suppose that V = W1 ⊕W2 ⊕ · · · ⊕Wk, where Wi is a T -invariant subspace of
V for each i (1 ≤ i ≤ k). Suppose that fi(t) is the characteristic polynomial of TWi

(1 ≤ i ≤ k). Then f1(t)f2(t) · · · fk(t) is the characteristic polynomial of T .

Proof. ✓ Let the characteristic polynomial of T be F , and pick a basis βi for each
i. If V = W1 ⊕W2 (i.e. k = 2), then

[T ]β1∪β2 =

(
[TW1 ]β1 O

O [TW2 ]β2

)
.

So, F (t) = f1(t)f2(t) is clear. Assume the result holds for k = n, and now, consider
k = n+1. Then, V = W1 ⊕ (W2 ⊕ · · · ⊕Wk) is apparent. As such, it follows from
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the above result for k = 2, that

f(t) = f1(t) (f2(t)f3(t) · · · fk(t)) = f1(t)f2(t) · · · fk(t).

Alternatively, for the sake of brevity we may write the following, which I prefer.

Proof. Let the characteristic polynomial of T be F , and pick a basis βi for each i.
By invariance, it holds for γ := β1 ∪ β2 ∪ · · · ∪ βk, that

[T ]γ =


[TW1 ]β1 O . . . O

O [TW2 ]β2 . . . O
...

...
. . .

...
O O · · · [TWk

]βk

 .

Consequently, it is clear that

f(t) = f1(t)f2(t) . . . fk(t).

5.4.2 Exercises

Exercise 1. Label the following statements as true or false.
(a) There exists a linear operator T with no T -invariant subspace.
(b) If T is a linear operator on a finite-dimensional vector space V , the the char-

acteristic polynomial of TW divides the characteristic polynomial of T .
(c) Let T be a linear operator on a finite-dimensional vector space V , and let

v and w be in V . If W is the T -cyclic subspace generated by v, W ′ is the
T -cyclic subspace generated by w, and W = W ′, then v = w.

(d) If T is a linear operator on a finite-dimensional vector space V , then for
any v ∈ V the T -cyclic subspace generated by v is the same as the T -cyclic
subspace generated by T (v).

(e) Let T be a linear operator on an n-dimensional vector space. Then there
exists a polynomial g(t) of degree n such that g(T ) = T0.

(f) Any polynomial of degree n with leading coefficient (−1)n is the characteristic
polynomial of some linear operator.

(g) If T is a linear operator on a finite-dimensional vector space V , and if V is
the direct sum of k T -invariant subspaces, then there is an ordered basis β

for V such that [T ]β is a direct sum of k matrices.
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Proof.
(a) ✓ False. The zero vector space is always T -invariant.
(b) ✓ True, see theorem 5.20.
(c) ✓ False. Let the linear operator T on R be defined by T (x) = −x. Fix

v = 1, and w = −1. Then, W = W ′ = {−1, 1} even though 1 ̸= −1.
(d) ✓ False. Consider the linear operator T on R defined by T (x) = x+1. Then,

the T -cyclic subspaces generated by 0 and 1 are Z+
0 and Z+, respectively.

(e) ✓ True. One such g is the characteristic polynomial of T .
(f) × False. Any linear operator on the zero vector space must have character-

istic polynomial 0.
Oh I misunderstood the exercise. The intended interpretation is probably
“Any polynomial g of degree n with leading coefficient (−1)n (and coefficients
from F) is the characteristic polynomial f of some linear operator on some
vector space (on F).”
It is clear for n = 1 that such a linear operator T on F exists. So, suppose
this is true for n = k, and consider n = k + 1.

(g) ✓ True by theorem 5.24.

Exercise 2. For each of the following linear operators T on the vector space V ,
determine whether the given subspace W is a T -invariant subspace of V .

(d) V = C([0, 1]), T (f(t)) =
[∫ 1

0 dx
]
t, and

W = {f ∈ V | f(t) = at+ b for some a and b}.

Proof.
(d) Notice that T (at + b) =

[
at2/2 + bt

]1
0
· t = (a/2 + b)t ∈ W . Hence, W is

indeed a T -invariant subspace of V .

Exercise 6. For each linear operator T on a vector space V , find an ordered basis
for the T -cyclic subspace generated by the vector z.

(a) V = R4, T (a, b, c, d) = (a+ b, b− c, a+ c, a+ d), and z = e1.

(c) V = M2×2(R), T (A) = At, and z =

(
0 1

1 0

)
.

Proof.
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(a) ✓ We see that

e1 = (1, 0, 0, 0)

T (e1) = (1, 0, 1, 1)

T 2(e1) = (1,−1, 2, 2)

T 3(e1) = (0,−3, 3, 3) = 3[T 2(e1)− T (e1)]

T 4(e1) = (−3,−6, 3, 3) = 6T 2(e1)− 9T (e1)

T 5(e1) = (−9,−9, 0, 0) = 9(T 2(e1)− 2T (e1))

T 6(e1) = (−18,−9,−9,−9) = 9(T 2(e1)− 2T (e1))− 9T (e1)

T 7(e1) = (−27, 0,−27,−27) = −27T (e1).

So, the T -cyclic subspace generated by the vector z = e1 is

span{T i(e1) | 0 ≤ i ≤ 7}.

Moreover, {e1, T (e1), T 2(e1)} is a basis for it.
(b) ✓ It is clear that {z} is a basis for the T -cyclic subspace generated by z.

Exercise 17. Let A be an n× n matrix. Prove that

dim(span({In, A,A2, . . . })) ≤ n.

Proof. By the Cayley-Hamilton-Frobenius theorem, the characteristic polynomial
f(x) of A is such that f(A) = O. As such,

dim(span(In, A,A
2, . . . , An)) ≤ n.

Furthermore, An+mf(A) = O for each m ∈ N. Hence, it follows from simple
induction, that An+m ∈ span(A, . . . , An). Clearly,

dim(span(In, A,A
2, . . . )) ≤ n.

Example. Let A =

(
1 1

0 1

)
and notice An =

(
1 n

0 1

)
. So, since

A2 −A =

(
1 2

0 1

)
−
(
1 1

0 1

)
=

(
0 1

0 1

)
,
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we see that {A,A2} is a basis for

span({In, A,A2, . . . }).

Hence, it must have dimension 2.

Example. Let A =

1 1 1

0 1 1

0 0 1

. Similarly, we observe that

An =

1 n 1
2n(n+ 1)

0 1 n

0 0 1

 .

Furthermore,

A− 2A2 +A3 =

0 0 1

0 0 0

0 0 0

 and − 3A+ 5A2 − 2A2 =

0 1 0

0 0 1

0 0 0

 .

Therefore, it is clear that {A,A2, A3} is a basis for

span({In, A,A2, . . . }).

i.e. the above vector space is of dimension 3.

Exercise. The above seems to suggest an interesting pattern arises with n×n upper
triangular matrices An whose entries are all 1’s. Can you find this pattern?

Exercise. Find a basis for An.

Exercise 18. Let A be an n× n matrix with characteristic polynomial

f(t) = (−1)ntn + an−1t
n−1 + · · ·+ a1t+ a0.

(a) Prove that A is invertible if and only if a0 ̸= 0.
(b) Prove that if A is invertible, then

A−1 = (−1/a0)[(−1)nAn−1 + an−1A
n−2 + · · ·+ a1In].

(c) Use (b) to compute A−1 for

A =

1 2 1

0 2 3

0 0 −1

 .
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Proof.
(a) If a0 = 0, then det(A) = f(0) = 0. Hence, A is not invertible. Conversely,

when a0 ̸= 0, by the Cayley-Hamilton-Frobenius theorem we have

(−1)nAn + an−1A
n−1 + · · ·+ a1A+ a0I = 0,

(−1)nAn + an−1A
n−1 + · · ·+ a1A = −a0I,

(−1/a0)[(−1)nAn−1 + an−1A
n−2 + · · ·+ a1I]A = I.

As such,

A−1 = (−1/a0)[(−1)nAn−1 + an−1A
n−2 + · · ·+ a1I].

This also conveniently proves (b).
(c) We first compute the characteristic polynomial f of A to be

f(t) = (1− t)(2− t)(1 + t) = t3 − 2t2 − t+ 2.

Accordingly,

A−1 = (−1/2)(A2 − 2A− I) =

1 −1 −2

0 1/2 3/2

0 0 −1

 .

Exercise 20. Let T be a linear operator on a vector space V , and suppose that
V is a T -cyclic subspace of itself. Prove that if U is a linear operator on V then
UT = TU if and only if U = g(T ) for some polynomial g(t).

Proof. By theorem 5.21, a basis for V is

{v, T (v), . . . , T r−1(v)}

for some vector v ∈ V and r := dim(V ). Suppose that UT = TU . We notice
U(v) :=

∑r
i=1 aiT

i(v) for some ai ∈ F. Then, a simple inductive proof shows

UT j(v) = T jU(v) =
r∑

i=1

aiT
i+j(v).

The converse is trivial.

Question. Let V be a vector space of dimension n. Must there exist a linear
operator T on V , such that V is a T -cyclic subspace of itself?
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Proof. Choose a basis β := {v1, v2, . . . , vn} for V . We define the linear transforma-
tion T on V by T (vi) = vi+1, where vn+1 := v1. Then, it is clear that the T -cyclic
subspace of v1 is V , since it contains β.

Definition. Let T be a linear operator on a vector space V which contains the vector
w. For brevity, we define ⟨w⟩ to be the T -cyclic subspace of V generated by w.

Exercise 21. Let T be a linear operator on a two-dimensional vector space V . Prove
that either V is a T -cyclic subspace of itself or T = cI for some scalar c.

Proof. Suppose T is not a scalar multiple of the identity, and choose a basis {u, v}
for V . Then, nullity(T ) < 2 so wlog T (u) = au+ bv ̸= 0. When a and b are both
nonzero, ⟨u⟩ = V . Otherwise, exactly one of a or b is nonzero, but regardless,
⟨u+ v⟩ = V .

Initally thought about using the following method, but forsook it in favor of induction,
as proving the matrix has full rank seemed unnecessarily tough. Credits to Ann for
reminding me to consider Vandemonde matrices, which I have proved some relavent
results about.
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Exercise 23. Let T be a linear operator on a finite-dimensional vector space V , and
let W be a T -invariant subspace of V . Suppose that v1, v2, . . . , vk are eigenvectors
of T corresponding to distinct eigenvalues. Prove that if v1 + v2 + · · ·+ vk is in W ,
then vi ∈ W for every i.

Proof. Let λi be the eigenvalue associated with the eigenvector vi. Since each λi

is distinct, exercise 22(a) of section 4.3 implies the matrix
1 λ1 λ2

1 · · · λk−1
1

1 λ2 λ2
2 · · · λk−1

2
...

...
...

...
1 λk λ2

k · · · λk−1
k


has full rank. So, each

ei =

k−1∑
j=1

cij

(
λj
1 λj

2 · · · λj
k

)t
,

for some scalars ci ∈ F. Going back to our subspace W , this implies

vi =
k−1∑
j=1

cij(λ
j
1v1 + λj

2v2 + · · ·+ λj
kvk) =

k−1∑
j=1

cijT
j(v1 + v2 + · · ·+ vk)

because {v1, v2, . . . , vk} is linearly independent. Since W contains v1+v2+ · · ·+vk

and is T -invariant, it contains all T j(v1 + v2 + · · · + vk). Hence, vi ∈ W for all
i.

An alternate phrasing.

Proof. Let λi be the eigenvalue associated with the eigenvector vi. Consider how
each vi can be expressed in terms of

β := {(v1 + v2 + · · ·+ vk), T (v1 + v2 + · · ·+ vk), . . . , T
k−1(v1 + v2 + · · ·+ vk)}.

For γ := {v1, v2, . . . , vk}, notice

[T j(v1 + v2 + · · ·+ vk)]γ =


λj
1

λj
2
...
λj
k

 .
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Placing these columns in a matrix gives
1 λ1 λ2

1 · · · λk−1
1

1 λ2 λ2
2 · · · λk−1

2
...

...
...

...
1 λk λ2

k · · · λk−1
k

 .

Notice this is a Vandermonde matrix, i.e. it has full rank. Therefore, every vi can
indeed be written in terms of β ⊆ W .

Exercise 24. Prove that the restriction of a diagonalizable linear operator T to any
nontrivial T -invariant subspace is also diagonalizable.

Proof. Let W be a T -invariant subspace. Pick a maximal linearly independent
subset γ of eigenvectors of TW , and extend it to some eigenbasis β of T . If γ fails
to span W , then ∑

i,j

cijvij ∈ W,

for some nonzero scalars cij and eigenvectors vij ∈ β − γ corresponding to the
eigenvalues λi of T . But by the preceding exercise,

∑
j cijvij ∈ W , contradicting

the maximality of γ.

Exercise 25.
(a) Prove the converse to exercise 19(a) of section 5.2: If T and U are diago-

nalizable linear operators on a finite-dimensional vector space V such that
UT = TU , then T and U are simultaneously diagonalizable. (See the defini-
tion in the exercises of section 5.2)

(b) State and prove a matrix version of (a).

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of T , and let v ∈ Eλi
. Notice

that TU(v) = λiU(v). By the preceding exercise, there is an eigenbasis βi :=

{wi1, wi2, . . . , wiki} for UEλi
. Therefore,

⋃
i βi is an eigenbasis for both T and

U .

Exercise 26. Let T be a linear operator on an n-dimensional vector space V such
that T has n distinct eigenvalues. Prove that V is a T -cyclic subspace of itself.

Proof. Let vi be an eigenvector of T corresponding to the eigenvalue λi, for 1 ≤
i ≤ n. By exercise 23, we see that vi ∈ ⟨v1 + v2 + · · · + vn⟩ for all i. Hence,
V = ⟨v1 + v2 + · · ·+ vn⟩.

Exercise 27. Let T be a linear operator on a vector space V , and let W be a T -
invariant subspace of V . Define T : V/W → V/W by T (v +W ) := T (v) +W for
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any v +W ∈ V/W .
(a) Prove that T is well defined. That is, show that T (v + W ) = T (v′ + W )

whenever v +W = v′ +W .
(b) Prove that T is a linear operator on V/W .
(c) Let η : V → V/W be the linear transformation defined in exercise 42 of section

2.1 by η(v) := v +W . Show that the diagram of Figure 5.1 commutes; that
is, prove that ηT = Tη. (This exercise does not require the assumption that
V is finite-dimensional.)

V V

V/W V/W

η

T

η

T

Figure 5.1

Proof.
(a) For v + W = v′ + W , we have v′ − v ∈ W . So, T (v′) ∈ T (v) + W . By

symmetry, T (v +W ) = T (v′ +W ).
(b) Let c ∈ F and u, v ∈ V . Then,

T (c(u+W ) + (v +W )) = T (cu+ v) +W = cT (u) + T (v) +W

= c(T (u) +W ) + ((T (v) +W ))

= cT (u+W ) + T (v +W ).

(c) Notice that
ηT (v) = T (v) +W = T (v +W ) = Tη(v).

Hence, Figure 5.1 commutes.

Exercise 28. Let f(t), g(t), and h(t) be the characteristic polynomials of T , TW ,
and T , respectively. Prove that f(t) = g(t)h(t).

Proof. Following the notation of theorem 5.20, define β/W := {vn+1 +W, vn+2 +

W, . . . , vm +W}. Since

T (vn+j +W ) := T (vn+j) +W =

(
m∑
i=1

cijvi

)
+W

=
m∑

i=n+1

cij(vi +W ) =
m−n∑
i=1

Bij(vn+1 +W ),

for some scalars cij , we have that [T ]β/W = B. As such, f(t) = g(t)h(t) follows
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from theorem 5.20.

Exercise 30. Prove that if both TW and T are diagonalisable and have no common
eigenvalues, then T is diagonalisable.

Proof. Assume that both TW and T are diagonalisable. i.e. there are eigenbases
γ := {v1, v2, . . . , vn} and β/W := {vn+1 +W, vn+2 +W, . . . , vm +W} of TW and
T , respectively. Then, β := {v1, v2, . . . , vm} is an eigenbasis for T , since TW and T

have no common eigenvalues.

Question. Is there a linear operator T and a T -invariant subspace W , such that
both TW and T are diagonalisable, but T itself is not?

Exercise 31. Let A =

1 1 −3

2 3 4

1 2 1

, let T = LA and let W be the cyclic subspace

of R3 generated by e1.
(a) Use theorem 5.21 to compute the characteristic polynomial of TW . Show that

{e2 +W} is a basis for R3/W and use this fact to compute the characteristic
polynomial of T .

(b) Use the results of (a) and (b) to find the characteristic polynomial of A.

Proof.
(a) We see that

(
e1 Ae1 A2e1

)
=

1 1 0

0 2 12

0 1 6

→

1 0 −6

0 1 6

0 0 0


So the characteristic polynomial of TW is t2−6t+6. Furthermore, {e1, Ae1}
and {e1, Ae1, e2} are bases for W and R3, respectively. Thus, {e2+W} must
be a basis for R3/W . In fact, it corresponds to the eigenvalue −1, since

T (e2) =
(
1 3 2

)t
= −e1 + 2Ae1 − e2.

i.e. the characteristic polynomial of T is −t− 1.
(b) By exercise 28, the characteristic polynomial of A is −(t+ 1)(t2 − 6t+ 6).

Exercise 38. Let C be a collection of diagonalizable linear operators on a finite-
dimensional vector space V . Prove that there is an ordered basis β such that [T ]β

is a diagonal matrix for all T ∈ C if and only if the operators of C commute under
composition. (This is an extension of exercise 25)
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Exercise 40. Let

A =


1 2 · · · n

n+ 1 n+ 2 · · · 2n
...

...
...

n2 − n+ 1 n2 − n+ 2 · · · n2

 .

Find the characteristic polynomial of A.

Exercise 41. Let A ∈ Mn×n(R) be defined by Aij = 1 for all i and j. Find the
characteristic polynomial of A.



Chapter 6

Inner Product Spaces

§6.1 Inner Products and Norms

Question. Preliminary questions.
(a) Why is the weaker condition of conjugate symmetry used over symmetry?

When are such inner products useful?
(b) What is the intuition behind complex inner products?
(c) If we allow inner products to take on complex values, then why not values in

arbitrary fields?

6.1.1 Theorems

Theorem 6.1. Let V be an inner product space. Then, for x, y, z ∈ V and c ∈ K,
the following statements are true.

(a) ⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩.
(b) ⟨x, cy⟩ = c̄⟨x, y⟩.
(c) ⟨x, 0⟩ = ⟨0, x⟩ = 0.
(d) ⟨x, x⟩ = 0 iff x = 0.
(e) If ⟨x, y⟩ = ⟨x, z⟩ for all x ∈ V , then y = z.

Proof. Parts (a) to (c) are clear from the linearity in the first-coordinate and con-
jugate symmetry of inner products; (d) follows from positive-definiteness. Lastly,
for (e), suppose that ⟨x, y⟩ = ⟨x, z⟩ for all x ∈ V . So ⟨x, y − z⟩ = 0 for x = y − z.
Hence, y − z = 0 by (d).

Theorem 6.2. Let V be an inner product space over K. Then for all x, y ∈ V and
c ∈ K, the following statements are true.

(a) ∥cx∥ = |c| · ∥x∥.
(b) |x| = 0 iff x = 0. In any case, ∥x∥ ≥ 0.
(c) (Cauchy-Schwarz Inequality) |⟨x, y⟩| ≤ ∥x∥∥y∥.

38
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(d) (Triangle Inequality) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Proof. Parts (a) and (b) are trivial.
(c) -
(d) By (c), ℜ⟨x, y⟩ ≤ |⟨x, y⟩| ≤ ∥x∥∥y∥. So,

∥x+y∥2 = ⟨x, x⟩+ ⟨y, y⟩+2ℜ⟨x, y⟩ ≤ ∥x∥2+∥y∥2+2∥x∥∥y∥ = (∥x∥+∥y∥)2.

6.1.2 Exercises

Exercise 1. Label the following statements as true or false.
(a) An inner product is a scalar-valued function on the set of ordered pairs of

vectors.
(b) An inner product space must be over the field of real or complex numbers.
(c) An inner product is linear in both components.
(d) There is exactly one inner product on the vector space Rn.
(e) The triangle inequality only holds in finite-dimensional inner product spaces.
(f) Only square matrices have a conjugate-transpose.
(g) If x, y, and z are vectors in an inner product space such that ⟨x, y⟩ = ⟨x, z⟩,

then y = z.
(h) If ⟨x, y⟩ = 0 for all x in an inner product space, then y = 0.

Proof.
(a) True.
(b) True. (Why?)
(c) False. Any inner product is linear in the first component and conjugate

linear in the second. Indeed, conjugate linearity is not equivalent to linearity;
consider the standard inner product over C. Notice ⟨1, i⟩ = −i ̸= i = i⟨1, 1⟩.

(d) False. The standard inner product is not the only inner product possible;
2⟨·, ·⟩ is another.

(e) False. It holds in all inner product spaces, such as NR with ⟨{xn}, {yn}⟩ :=∑∞
n=1 xnyn.

(f) False. Consider the standard inner product on R. Then, ⟨0, 1⟩ = ⟨0, 2⟩.
(g) True, since ⟨y, y⟩ = 0.

Exercise 4.
(a) Complete the proof in Example 5 that ⟨·, ·⟩ is an inner product (the Frobenius

inner product) on Mn×n(K).
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(b) Use the Frobenius inner product to compute ∥A∥, ∥B∥, and ⟨A,B⟩ for

A =

(
1 2 + i

3 i

)
and B =

(
1 + i 0

i −i

)
.

Proof.
(a) Trivial.
(b) Since

⟨A,A⟩ = tr

((
1 3

2− i −i

)(
1 2 + i

3 i

))
= tr

(
10 2 + 4i

2− 4i 6

)
= 16

and

⟨B,B⟩ = tr

((
1− i −i

0 i

)(
1 + i 0

i −i

))
= tr

(
3 −1

−1 1

)
= 4,

we see that ∥A∥ = 4 and ∥B∥ = 2. Finally,

⟨A,B⟩ = tr

((
1− i −i

0 i

)(
1 2 + i

3 i

))
= tr

(
1− 4i 4− i

3i −1

)
= −4i.

(b) Alternatively,

⟨A,A⟩ =
(
1 3

)(1
3

)
+
(
2 + i i

)(2 + i

i

)
= 10 + 6 = 16,

⟨B,B⟩ =
(
1 + i i

)(1 + i

i

)
+
(
0 −i

)( 0

−i

)
= 3 + 1 = 4,

⟨A,B⟩ =
(
1 + i i

)(1
3

)
+
(
0 −i

)(2 + i

i

)
= (1− 4i)− 1 = −4i.

Question.
(a) Let A,B ∈ Mn×n(K) and ∥·∥ be a norm on Mn×n(K). When does it hold

that ∥AB∥ = ∥A∥∥B∥?
(b) Let (V, ∥·∥, ∗) be a normed vector space with vectorial multiplication ∗ : V 2 →

V . For x, y ∈ V , when does it hold that ∥x ∗ y∥ = ∥x∥∥y∥?

Question. For any z, w,∈ C, we know zw = z·w. What about for A,B ∈ Mn×n(K)?
When is AB = A ·B?
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Proof. Always, since

(
AB
)
ij
:= (AB)ij =

n∑
k=1

aikbkj =
n∑

k=1

aikbkj =
(
A ·B

)
ij
.

Exercise 8. Provide reasons why each of the following is not an inner product on
the given vector spaces.

(a) ⟨(a, b), (c, d)⟩ = ac− bd on R2.
(b) ⟨A,B⟩ = tr(A+B) on M2×2(R).
(c) ⟨f(x), g(x)⟩ =

∫ 1
0 f ′(t)g(t) dt on P(R), where ′ denotes differentiation.

Proof.
(a) Notice ⟨e2, e2⟩ = −1.
(b) Observe that ⟨−I,O⟩ = −2.
(c) Note that ⟨x,−1⟩ = −1.

Exercise 10. Let V be an inner product space, and suppose that x and y are or-
thogonal vectors in V . Prove that ∥x+y∥2 = ∥x∥2+∥y∥2. Deduce the Pythagorean
theorem in R2. Visit goo.gl/1iTZzC for a solution.

Proof. By orthogonality, ⟨x, y⟩ = 0 so

∥x+ y∥2 = ⟨x, x⟩+ ⟨y, y⟩+ 2ℜ⟨x, y⟩ = ∥x∥2 + ∥y∥2 + 0.

The Pythagorean theorem hence follows.

x+
y

y

x

Figure 6.1: The Pythagorean theorem.

Question. Let V be a normed vector space, such that ∥x + y∥2 = ∥x∥2 + ∥y∥2 for
all orthogonal x, y ∈ V . Then, must ∥·∥ be induced by some inner product ⟨·, ·⟩ on
V ?

https://media.pearsoncmg.com/aw/aw_friedberg_linearalgebra_5e/solutions/sec_6_1.html
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Exercise 12. Let {v1, v2, . . . , vk} be an orthogonal set in V , and let a1, a2, . . . , ak

be scalars. Prove that ∥∥∥∥∥
k∑

i=1

aivi

∥∥∥∥∥
2

=

k∑
i=1

|ai|2∥vi∥2.

Proof. Notice that u =
∑k−1

i=1 aivi is orthogonal to vk. Using exercise 10, the result
hence follows from induction.

Exercise 15.
(a) Prove that if V is an inner product space, then |⟨x, y⟩| = ∥x∥∥y∥ iff one of

the vectors x or y is a multiple of the other.
(b) Derive a similar result for the equality ∥x+ y∥ = ∥x∥+ ∥y∥, and generalise it

to the case of n vectors.

Proof.
(a)

The following question is inspired by exercise 25.

Observation. Let ⟨·, ·⟩ be an inner product on V , and f : V → R+
0 be such that

f(x) > 0 if x ̸= 0. Then, ⟨x, y⟩f := f(x)⟨x, y⟩ is an inner product.

Question. Let [·, ·] be a real inner product on the space V over C, such that [x, ix] =
0 for all x ∈ V . Is [·, ·] unique up to a scalar multiple?

Proof. No; this is true iff V = {0}. When there is a nonzero x ∈ V ,

⟨x, x⟩∥·∥ = ∥x∥⟨x, x⟩ and ⟨x, 2x⟩∥·∥ = 2∥x∥⟨x, 2x⟩.

Hence, ⟨x, x⟩∥·∥ and [·, ·] are not equivalent up to a scalar multiple.

Note 6.3. The above shows that no inner product is unique up to a scalar multiple.

Exercise 17. Let T be a linear operator on an inner product space V , and suppose
that ∥T (x)∥ = ∥x∥ for all x. Prove that T is injective.

Proof. If T (x) = T (y), then ∥x− y∥ = ∥T (x− y)∥ = ∥T (x)− T (y)∥ = 0.

Exercise 18. Let V and W be vector spaces over K, and ⟨·, ·⟩ be an inner product
on W . If T : V → W is linear, prove that ⟨x, y⟩′ = ⟨T (x), T (y)⟩ defines an inner
product on V iff T is injective.
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Exercise 20. Let V be an inner product space over K. Prove the polar identities:
For all x, y ∈ V ,

(a) ⟨x, y⟩ = ∥x+ y∥2 − ∥x− y∥2
4

if K = R;

(b) ⟨x, y⟩ = 1
4

∑4
k=1 i

k∥x+ iky∥2 if K = C, where i2 = −1.

Proof.
(a) We see that

∥x+ y∥2 − ∥x− y∥2
4

=
∥x∥2 + 2ℜ⟨x, y⟩+ ∥y∥2 − ∥x∥2 + 2ℜ⟨x, y⟩ − ∥y∥2

4

= ℜ⟨x, y⟩.

The result follows from K = R.
(b) Expanding,

1

4

4∑
k=1

ik∥x+ iky∥2 = 1

4

4∑
k=1

ik
(
∥x∥2 + 2ℜ

(
ik⟨x, y⟩

)
+ ∥y∥2

)
=

2iℜ(−i⟨x, y⟩)− 2ℜ(−⟨x, y⟩)− 2iℜ(i⟨x, y⟩) + 2ℜ⟨x, y⟩
4

=
2iℑ⟨x, y⟩+ 2ℜ⟨x, y⟩+ 2iℑ⟨x, y⟩+ 2ℜ⟨x, y⟩

4

= ⟨x, y⟩.

Exercise 21. Let A be an n× n matrix. Define

A1 :=
1

2
(A+A∗) and A2 :=

1

2i
(A−A∗).

(a) Prove that A∗
1 = A1, and A∗

2 = A2, and A = A1+iA2. Would it be reasonable
to define A1 and A2 to be the real and imaginary parts, respectively, of the
matrix A?

(b) Let A be an n × n matrix. Prove that the representation in (a) is unique.
That is, prove that if A = B1 + iB2, where B∗

1 = B1 and B∗
2 = B2, then

B1 = A1 and B2 = A2.

Proof.
(a) Notice that

A∗
1 =

1

2
(A+A∗)∗ =

1

2
(A∗ +A) = A1,

A∗
2 =

1

2i
(A−A∗)∗ = − 1

2i
(A∗ −A) = A2,
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Furthermore, A = 1
2(A+A∗) + 1

2(A−A∗) = A1 + iA2.
With respect to the conjugate transpose, the quintessential property we
are looking for in a suitable definition of real and imaginary parts is
A∗ = A1 − iA2. Indeed, this is what we have. Contrary to expectations
from complex arithmetic, A1 and A2 are not always real (consider A = iE12

for an example.). However, this is irreconcilable with A∗ = A1 − iA2 — real
matrices are not all invariant under transposition. As such, what we have
remains reasonable.
However, if we were concerned merely with conjugation, a better definition is
found in (ℜA)ij := ℜ(Aij) and (ℑA)ij := ℑ(Aij). Clearly, (ℜA)∗ = ℜA and
(ℑA)∗ = ℑA as they are real matrices; A = A1 + iA2 and A∗ = A1 − iA2.
All the expected properties of a real and imaginary part are satisfied — this
is the appropriate definition.

(b) Evaluating A+A∗ and A−A∗ gives A1 = B1 and A2 = B2, respectively.

Note. I asked for feedback in math discord, and eigentaylor gave me the following
tips.

• Hermitian matrices (A∗ = A) are like real numbers.
• Skew-Hermitian matrices (A∗ = −A) are like imaginary numbers.
• Unitary matrices (A∗ = A−1) are complex numbers lying on the unit circle.

Also, the conjugate transpose is the ‘true’ matrix transpose — results that hold true
for the transpose of real matrices hold true for the conjugate transpose of complex
matrices. Here is my own example: For A ∈ Mn×n(K) and eigenvectors x, y ∈ Kn

corresponding to λ and µ, such that λ ̸= µ, notice that ⟨x, y⟩ = 0 iff A is Hermitian.

Observation. Let A ∈ Mn×n(K).

A iA

Hermitian Skew-Hermitian
Skew-Hermitian Hermitian

Unitary Unitary

Table 6.1

Exercise 23. Let V = Kn and A ∈ Mn×n(K).
(a) Prove that ⟨x,Ay⟩ = ⟨A∗x, y⟩ for all x, y ∈ V .
(b) Suppose that for some B ∈ Mn×n(K), we have ⟨x,Ay⟩ = ⟨Bx, y⟩ for all

x, y ∈ V . Prove that B = A∗.
(c) Let α be the standard ordered basis for V . For any orthonormal basis β for

V , let Q be the n×n matrix whose columns are the vectors in β. Prove that
Q∗ = Q−1.

https://discord.com/channels/268882317391429632/540211747613704221/1309435068607103028
https://discord.com/channels/268882317391429632/540211747613704221/1309435068607103028
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(d) Define linear operators T and U on V by T (x) = Ax and U(x) = A∗x. Show
that [U ]β = [T ]∗β for any orthonormal basis β for V .

Proof.
(a) Consider the jth column aj of A and the jth entry yj of y. We have ⟨x,Ay⟩ =∑

aj

(b) Since ⟨A∗x, y⟩ = ⟨Bx, y⟩ by (a), A∗ = B.
(c)

Exercise 26. Prove that the following are norms on the vector space V .
(a) V = R2; ∥(a, b)∥ = |a|+ |b| for all (a, b) ∈ V .
(b) V = C([0, 1]); ∥f∥ = maxt∈[0,1]|f(t)| for all f ∈ V .
(c) V = C([0, 1]); ∥f∥ =

∫ 1
0 |f(t)| dt for all f ∈ V .

(d) V = Mm×n(K); ∥A∥ = maxi,j |Aij | for all A ∈ V .

Proof.
(a)(i) If a, b ̸= 0, then |a| > 0 and |b| > 0 so ∥(a, b)∥ > 0.

(ii) If a, b = 0, then ∥(a, b)∥ = 0 + 0 = 0.
(iii) For any c ∈ R, we have ∥c(a, b)∥ = |ca|+ |cb| = |c|(|a|+ |b|) = |c|∥(a, b)∥.
(iv) ∥(a, b) + (c, d)∥ = |a+ c|+ |b+ d| ≤ |a|+ |c|+ |b|+ |d| = ∥(a, b)∥+ ∥(c, d)∥.

(b)(i) If f ̸= 0, then f(t) ̸= 0 for some t ∈ [0, 1] so ∥f∥ ≥ |f(t)| ≥ 0.
(ii) If f = 0, then ∥f∥ = max{0} = 0.
(iii) For any c ∈ R, we have ∥cf∥ = max|cf | = |c|max|f | = |c|∥f∥.
(iv) ∥f + g∥ = max|f + g| ≤ max(|f |+ |g|) = max|f |+max|g| = ∥f∥+ ∥g∥.

(c)(i) Suppose f(x) ̸= 0 for some x. Wlog, x ≥ 0. Then, y := inf{t : |f(t)| =
1
2 |f(x)|} < x. So, ∥f∥ ≥

∫ x
y

1
2 |f(x)| dt = 1

2(x− y)|f(x)| > 0.
(ii) If f = 0, then ∥f∥ =

∫ 1
0 0 dt = 0.

(iii) For any c ∈ R, we have ∥cf∥ =
∫ 1
0 |cf(t)| dt =

∫ 1
0 |c||f(t)| dt = |c|∥f∥.

(iv) As before, this follows from the absolute value satisfying the triangle inequal-
ity.

(d) Similarly straightforward.

Exercise 27. Use Exercise 11 to show that there is no inner product ⟨·, ·⟩ on R2,
such that ∥x∥2 = ⟨x, x⟩ for all x ∈ R2 if the norm is defined as in exercise 26(a).

Proof. Since ∥e1 + e2∥2 + ∥e1 − e2∥2 = 8 while 2∥e1∥2 + 2∥e2∥2 = 4, this norm is
not induced by any inner product.

Question. Let V be a vector space with basis β := {vα} and norm ∥·∥. Fix p ≥ 1.
Consider the βp-norm ∥∑ cαvα∥∗ :=

∑ |cα|∥vα∥p. When is it induced by an inner
product?
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Exercise 29. Let ∥·∥ be a norm on a real vector space V satisfying the parallelogram
law given in Exercise 11. Define

⟨x, y⟩ := 1

4

[
∥x+ y∥2 − ∥x− y∥2

]
.

Prove that ⟨·, ·⟩ defines an inner product on V such that ∥x∥2 = ⟨x, x⟩ for all x ∈ V .

Exercise 30. Let ∥·∥ be a norm (as defined on page 337) on a complex vector space
V satisfying the parallelogram law was given in Exercise 11. Prove that there is an
inner product ⟨·, ·⟩ on V , such that ∥x∥2 = ⟨x, x⟩ for all x ∈ V .

Proof. Consider the inner product ⟨x, y⟩ = 1
4

∑4
k=1 i

k∥x+ iky∥2. (Work in
progress)

Corollary. A norm is induced by an inner product iff it satisfies the parallelogram
law.

§6.2 (Self) Angles and isometries

The inner product is a generalisation of the dot product, and indeed has the properties we
would expect it to hence possess, as exercise 15 demonstrates. Thus, we might attempt
to define the angle between two vectors:

Definition. Let V be a real inner product space and x, y ∈ V . We define the angle
between x and y as

θ(x, y) := arccos
⟨x, y⟩
∥x∥∥y∥ .

Naturally, we question our sanity1:

Question. Let V and W be a real inner product spaces. If f : V → W is an
isometry, then must angles be preserved? That is, given ∥x − y∥ = ∥f(x) − f(y)∥
for all x, y ∈ V , must θ(x, y) = θ(f(x), f(y)) for all x, y ∈ V ?

Isometries preserve angles: given three points transformed under an isometry, the dis-
tances between them are invariant. i.e. the triangle before and after the isometry are
congruent. As such, we expect that isometries preserve angles — the answer to the above
is positive — if our definition of angle is reasonable.

Proof.

1I phrased it this way for comedic purposes.
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Question. Would extending the above definition to

θ(x, y) := arccos
|⟨x, y⟩|
∥x∥∥y∥

for complex inner product spaces be unreasonable?

Preliminary note: ⟨y − |⟨y, x̂⟩|x̂, x⟩ = ⟨z, x⟩ − |⟨z, x⟩|.

Lemma. Let V be an inner vector space. If ∥x+ y∥ = ∥x∥+ ∥y∥, then x = cy for
some c ∈ C.

Proof. Let y∥ = ⟨y, x̂⟩x̂ and y⊥ = y − y∥. So, ⟨x, y⊥⟩ = 0. Hence,

∥x+ y∥2 = ∥x+ y∥∥2 + ∥y⊥∥2 = ∥x∥2 + 2∥x∥∥y∥∥+ ∥y∥∥2 + ∥y⊥∥2

and
(∥x∥+ ∥y∥)2 = ∥x∥2 + 2∥x∥∥y∥+ ∥y∥∥2 + 2∥y∥∥∥y⊥∥+ ∥y⊥∥2.

When ∥x+ y∥ = ∥x∥+ ∥y∥,

∥x∥∥y∥∥ = ∥x∥∥y∥+ ∥y∥∥∥y⊥∥ ≥ ∥y∥∥(∥x∥+ ∥y⊥∥).

Therefore, ∥y⊥∥ = 0. × Thanks to afqt who pointed out my implicit assumption
that x is a real multiple of y∥, and that the implication can be strengthened to
c ≥ 0.

Lemma. Let V be an inner vector space and x, y ∈ V . If ∥x+y∥ = ∥x∥+∥y∥, then
x = cy for some c ≥ 0.

Proof. Let y∥ = ⟨y, x̂⟩x̂ and y⊥ = y − y∥. So, ⟨x, y⊥⟩ = 0. Hence,

∥x+ y∥2 = ∥x+ y∥∥2 + ∥y⊥∥2 = ∥x∥2 + 2ℜ⟨x, y∥⟩+ ∥y∥∥2 + ∥y⊥∥2

and
(∥x∥+ ∥y∥)2 = ∥x∥2 + 2∥x∥∥y∥+ ∥y∥∥2 + 2∥y∥∥∥y⊥∥+ ∥y⊥∥2.

When ∥x+ y∥ = ∥x∥+ ∥y∥,

ℜ⟨x, y∥⟩ = ∥x∥∥y∥+ ∥y∥∥∥y⊥∥ ≥ ∥y∥∥(∥x∥+ ∥y⊥∥) ≥ ℜ⟨x, y∥⟩+ ∥y∥∥∥y⊥∥.

Therefore, ∥y⊥∥ = 0 and x = cy, for some c ∈ K. Since |c+ 1| = |c|+ 1, we have
c ≥ 0.

Note. Afqt also mentioned this is just the equality case of Cauchy-Schwartz. But
I’m still working on my proof of Cauchy-Schwartz; I don’t have the required knowl-
edge of how the proof goes, in order to do it that way. So, I used the above method,
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which applied Cauchy-Schwartz at the end.

Note. Let V be an inner product space and x, y ∈ V . While ⟨y, x̂⟩x̂ is always
orthogonal to x, the vector ⟨x̂, y⟩x̂ is orthogonal to x iff ⟨x, y⟩ is real.

Question. If V is a normed space and ∥x+ y∥ = ∥x∥+ ∥y∥, must x = cy for some
c ∈ C?

Question. Is an isometry T between two inner product spaces V and W linear?

Proof. Let x, y ∈ V and a ∈ K; notice that ∥T (ax)−T (x)∥ = |a−1|∥T (x)∥. Since
∥aT (x)∥ = ∥T (ax)∥, wlog ∥T (ax) − T (x)∥ = ∥T (ax)∥ − ∥T (x)∥. By the above
lemma, T (ax) = cT (x) for some c ≥ 1. In fact, |a| = c.

If our definition of angle is sound, then we expect basic trigonometry to hold.

Claim. Let V be an inner product space. Then, for all x, y ∈ V , the following are
true.

(a) The sine rule:
sin θ(x, y)

∥x− y∥ =
sin θ(x, x− y)

∥y∥ .

(b) The cosine rule:

cos θ(x, y) =
∥x∥2 + ∥y∥2 − ∥x− y∥2

2∥x∥∥x∥ .

x

y

x−
y

θ(x, y)

θ(x, x− y)

Figure 6.2

Exercise. Find a metric on a vector space that does not induce a norm.

Proof. Consider the discrete metric d on R. It clearly cannot be induced by any
norm, since d(1, 0) = d(2, 0).
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§6.3 Linear transformations

Observation 6.4. Let V be a normed vector and T : V → V be linear. If
nullity(T ) = 0, we have the induced T -norm ∥v∥T := ∥T (v)∥.

Question 6.5. Let V be a normed vector space. Does there exist a linear T : V → V ,
such that ∥·∥T is induced by some inner product on V ?

§6.4 Continuity

In school, my teacher once handwaved why T limTn = limTn (pointwise convergence). I
asked on math discord and found that any linear operator on a finite-dimensional normed
space is continuous. So, let’s try to prove it!

Observation 6.6. Let {xn} and {yn} be sequences in a normed space X with limits
x and y, respectively; c ∈ K. Then, cxn + yn → ax+ y.

Claim 6.7. Each inner product space X has an orthonormal basis.

Proof. Let C be a chain of orthonormal subsets of X and xi ∈ βi ∈ C, where
β1 ⊆ · · · ⊆ βn wlog. As such, xi ∈ βn. So, C is orthonormal. There is hence a
maximal orthonormal subset β of X, by Choice. Suppose, for contradiction, that
there exists x ∈ X − span(β). Then, x̂ ∪ β is an
Oh yep this doesn’t work.

Lemma 6.8. Let β := {x1, x2, . . . , xm} be a basis for the normed space X, and
tn =

∑m
i=1 cinxi. Then, tn → x1 iff c1n → 1 and cin → 0 for each i ̸= 1.

The proof is trivial if X is a finite-dimensional inner product space.

Claim 6.9. Let X and Y be finite-dimensional normed spaces. Any linear transfor-
mation T : X → Y is continuous.

https://discord.com/channels/268882317391429632/540211747613704221/1237608047551975528
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Miscellaneous

Exercise (Leibniz’s formula for determinants.). Let A be an n×n matrix. Prove that

det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Aiσ(i).

An exercise by TTera (link to relevant discord messages).

Exercise. Suppose V is a real vector space of finite dimension which admits a linear
operator T : V → V such that T 2v = −v for all v ∈ V . Show that V is of even
dimension.

A question asked in math discord (link to relevant discord message).

Exercise. Let A and B be n × n real matrices. Also define f : R → R by f(t) =

det(A+ tB). Compute f ′(0), and more generally, f ′(t) for any t ∈ R.

An exercise by Daminark (link to relevant discord messages).

Exercise.
(a) Let A and B be commuting diagonalizable n×n matrices over F. Then, they

are simultaneously diagonalizable.
(b) Commuting matrices A,B ∈ Mn×n(C) are simultaneously triangularizable.

That is, there exists a basis β for which [LA] = [LB] is upper triangular.
(Think about what the n = 1 case means.)

Two exercises Neam sent, probably from LADR.

Exercise. Suppose V1, . . . , Vm are vector spaces. Prove that L(V1 × · · · × Vm,W )

and L(V1,W ) × · · · × L(Vm,W ) are isomorphic vector spaces, where × indicates
the external direct sum.
Find a canonical isomorphism.

50

https://discord.com/channels/268882317391429632/359052581022203914/818709652018561024
https://discord.com/channels/268882317391429632/359052581022203914/1214337737662926858
https://discord.com/channels/268882317391429632/359052581022203914/854855934857183242
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Proof. For each v ∈ Vi, let vi := (

i−1︷ ︸︸ ︷
0, 0, . . . , 0, v, 0, 0, . . . , 0). Now let the linear

transformation.

T : L(V1 × · · · × Vm,W ) → L(V1,W )× · · · × L(Vm,W )

be defined by T (f) := (f1, f2, . . . , fm), where fi(v) := f(vi).
Suppose T (f) = T (f ′), i.e. f(vi) = f ′(vi) for every 1 ≤ i ≤ m and v ∈ Vi. By
linearity, f = f ′. Hence injectivity holds.
Pick any (f1, f2, . . . , fm). We define f(vi) := fi(v). Then, T (f) = (f1, f2, . . . , fm), as
desired. Therefore, T is surjective.
Lastly, we see that

(af + f ′)i(v) := (af + f ′)(vi) = af(vi) + f ′(vi) =: afi(v) + f ′i (v),

for any scalar a ∈ F. So,

T (af + f ′) = (af1 + f ′1, af2 + f ′2, . . . , afm + f ′m).

This implies T is linear. Consequently, T is an isomorphism.

Remark. The generalised version for infinitely many vector spaces Vα, for 0 ≤ α ≤
κ, is as follows.

L
(⊕

α

Vα,W

)
∼=
⊗
α

L(Vα,W ).

This should essentially follow from the above proof, except that each m-tuple is
now replaced with a κ-sequence. i.e. h : κ → ⋃

α Vα, where h(α) ∈ Vα.

Note. For our isomorphism T be injective, the (external) direct sum is necessary
and can’t be replaced with a direct product. Otherwise we cannot conclude f = f ′

from f(vi) = f ′(vi). Similarly, since T (f) := (f1, f2, . . . , fm), its codomain must be
the direct product and cannot be replaced with a direct sum.

Exercise. For each 0 ≤ α ≤ κ, let Vα be a vector space. Prove that the direct
product of all Vα has strictly greater dimension than that of the direct sum. That
is,

dim

(
κ⊗
α

Vα

)
> dim

(
κ⊕
α

Vα

)
.

Proof. (Note. The letters κ, µ, and λ are taken to be cardinal numbers.)
Choose a basis

βα := {vα1 , vα2 , . . . , vαµα
}

for each Vα. It is clear that γ⊕ :=
⋃κ

α βα is a basis for the direct sum
⊕κ

α Vα. Now
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let F be the set of all gλ : λ → ⋃κ
α βα, such there there is an injection fλ : λ → κ,

for which gλ(α) ∈ βfλ(α) for all 1 ≤ α ≤ λ. Define δ⊗ := {∑λ
α gλ(α) | g ∈ F}.

ci

Exercise. Suppose W1, . . . ,Wm are vector spaces. Prove that L(V,W1 × · · · ×Wm)

and L(V,W1)× · · · × L(V,Wm) are isomorphic vector spaces.
Find a canonical isomorphism.

Another exercise from LADR.

Exercise. Let V be a finite dimensional vector space and T ∈ L(V ). Prove that T

is a scalar multiple of the identity if and only if ST = TS for every S ∈ L(V ).

Proof. If T is a scalar multiple of the identity, then the result is straightforward.
Conversely, suppose ST = TS for all linear operators S on V . We choose a
basis β := {v1, v2, . . . , vn} for V . Let the linear operator Si on V be defined by
Si(vi) := 0, and Si(vi) := vi for i ̸= j. It follows that

SiT (vi) = TSi(vi) = 0.

So, for each i we have T (vi) = civi for some scalar ci ∈ F. Now, define another
linear operator U on V , by U(vi) = vi+1, where vn+1 := 1. For each i, it hence
holds that UT (vi) = TU(vi), i.e.

civi+1 = ci+1vi+1.

Therefore, c1 = c2 = · · · = cn and T must be a scalar multiple of the identity.

Question. Does the Cantor-Schröder-Bernstein theorem hold for linear functions?
That is, if there exists the injective linear transformations T : V → W and U : W →
V , then there is a bijective linear transformation S : V → W?

Proof. Suppose that such linear transformations T and U exist. Then, dim(V ) =

dim(W ) is clear. As such, V ∼= W implies such a bijective S exists.

The following exercise is from Timothy Gowers’ video, titled ‘1. A strange determinant’.
The second part on trace is taken from Wikipedia.

https://www.youtube.com/watch?v=byjhpzEoXFs&list=PLOft35kj95aajgXAFHKklygbpsESMQUid
https://en.wikipedia.org/wiki/Pascal_matrix
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Exercise (Pascal’s determinant.). The n× n (symmetric) Pascal matrix Sn is
1 1 1 · · ·
1 2 3 · · ·
1 3 6 · · ·
...

...
...

 .

Prove that the determinant of Sn is always 1 and

tr(Sn) =

n−1∑
k=0

(2k)!

(k!)2
.
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