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Chapter 1

The Real and Complex Number
Systems

§1.1 Hw 1

Exercise 1.1. If r is rational (r ̸= 0) and x is irrational, prove that r + x and rx

are irrational.

Proof. If they were rational, (r + x) − r and rx · 1/r would also be rational, a
contradiction.

Exercise 1.3. Prove Proposition 1.15.

Proof. (a) The axioms (M) give

(1/x)(xy)
M5
= (1/x)(xz)

[(1/x)x]y
M3
= [(1/x)x]z

[x(1/x)]y
M2
= [x(1/x)]z

1 · y M5
= 1 · z

y
M4
= z

(b) Fix z = 1 in (a).
(c) Take z = 1/x in (a).
(d) Apply (c) to (1/x)x = 1.

Exercise 1.5. Let A be a nonempty set of real numbers which is bounded below.
Let −A be the set of all numbers −x, where x ∈ A. Prove that

inf(A) = − sup(−A).

3



CHAPTER 1. THE REAL AND COMPLEX NUMBER SYSTEMS 4

Proof. Let i := inf(A) and s = sup(−A). Notice −i is a upper bound of −A, and
−s is a lower bound of A. As such, −i ≥ s and i ≥ −s; the equality i = −s

holds.

Exercise 1.6. Fix b > 1.
(a) If m,n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

(bm)1/n = (bp)1/q.

Hence it makes sense to define br = (bm)1/n.
(b) Prove that br+s = brbs if r and s are irrational.
(c) If x is real, define B(x) to be the set of all numbers bt, where t is rational and

t ≤ x. Prove that
br = supB(r)

when r is rational. Hence it makes sense to define

bx = supB(x)

for every real x.
(d) Prove that bx+y = bxby for all real x and y.

Proof. (a) Notice bmq = bpn. By taking (nq)th roots, we have

(bm)1/n = (bp)1/q.

(b) By the Corollary to Theorem 1.21,

b
m
n
+ p

q = b
mq+pn

nq = (bmqbpn)
1
nq = b

m
n b

p
q .

(c) Let m/n > p/q. Then bm/n > bp/q, lest bmq ≤ bpn (a contradiction). The
converse hence holds. So, br = supB(r).

(d) For rational t, note bx+tb−t bounds B(x) from above. That is, bx+t ≥ bxbt.
Equality holds since bxby ≥ bx+y is clear. Let s := sup{bx+t | t ≤ y}. Then,
s(bx)−1 bounds B(y) from above. As such, s ≥ bxby. So bxby ≤ s ≤ bx+y.

Exercise 1.8. Prove that no order can be defined in the complex field that turns it
into an ordered field. Hint: −1 is a square.

Proof. Suppose, for contradiction, that (C, <) is an ordered field. Wlog, let 1 >

−1. Then i2 = (−i)2 = −1 > 0 so −1 > 1, a contradiction.
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§1.2 Hw 2

Exercise 1.10. Suppose z = a+ bi, w = u+ iv, and

a =

( |w|+ u

2

)1/2

, b =

( |w| − u

2

)1/2

.

Proof. If v ≥ 0, then z2 = u + |v|i = w. Similarly when v ≤ 0, we have (z̄)2 =

u − |v|i = w. We conclude that every nonzero complex number has two complex
square roots.

Exercise 1.12. If z1, . . . , zn are complex, prove that

|z1 + z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn|.

Proof. The result is clear by using induction on the triangle inequality (Theorem
1.33(e)).

Exercise 1.13. If x, y are complex, prove that

∣∣|x| − |y|
∣∣ ≤ |x− y|.

Proof. Clearly, square roots of reals preserve order. It suffices to notice

|x− y|2 = (x− y)(x̄− ȳ)

= xx̄− Re(xȳ) + yȳ

≥ |x|2 − 2|xȳ|+ |y|2

= |x|2 − 2|x||y|+ |y|2

= ||x| − |y||2.

Note 1.1. The real case is marginally simpler:

∣∣|x| − |y|
∣∣2 = x2 − 2|x||y|+ y2 ≤ x2 − 2xy + y2 = |x− y|2.

Exercise 1.15. Under what conditions does equality hold in the Schwarz inequality?

Proof. Consider the real case. Suppose that there exists x ∈ R, so for all i, so
bi = xai. Then, equality is clear as∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣
2

= x2

∣∣∣∣∣
n∑

i=1

a2i

∣∣∣∣∣
2

=
n∑

i=1

|ai|2
n∑

i=1

|xai|2.
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Exercise 1.17. Prove that

|x+ y|2 + |x− y|2 = 2|x|2 + 2|y|2

if x ∈ Rk and y ∈ Rk. Interpret this geometrically, as a statement about parallelo-
grams.

Proof. Notice that

|x+ y|2 = (x+ y) · (x− y) and |x− y|2 = (x− y) · (x− y)

= |x|2 + 2x · y + |y|2, = |x|2 − 2x · y + |y|2.

Therefore, |x+y|2+ |x−y|2 = 2|x|2+2|y|2. Let A be the area of the two squares
having length equal to a parallelogram’s respective diagonals. Also let B be the
area of the two squares having side lengths equal to the parallelogram’s longer and
shorter sides. Then, our equality implies A = 2B.

Proof. Alternatively, this can be proved as a corollary of Pythagoras’ Theorem.
We know

|x+ y|2 = |x|2 + |y|2 and |x− y|2 = |x|2 + |y|2.

Taking the sum,
|x+ y|2 + |x− y|2 = 2|x|2 + 2|y|2.



Chapter 2

Basic Topology

§2.1 Theorems

“A metric space is just a space equipped with a ruler” — Me (4/5/24)

Theorem 2.30. Suppose Y ⊆ X. A subset E of Y is open relative to Y if and only
if E = Y ∩G for some open subset G of X.

Proof. Let p ∈ E.
Assume E is open relative to Y . Then, there is r > 0 so Nr(p) ∩ Y ⊆ E. Notice,
Nr(p)∩ (Y −E) = ∅. So we define G :=

⋃
p∈E Nrp(p). Clearly, this superset of E

is open relative to X.
Conversely, suppose E = Y ∩ G for some open subset G of X. Then, as p ∈ G,
there is r > 0 with Nr(p) ⊆ G. As such, Nr(p)∩Y ⊆ E. Hence, E is open relative
to Y .

Example 2.31. Let X = R2. In each case, G is the combined region enclosed by
the dotted lines, and Y consists of the shaded area and all points of E.

Figure 2.1: E contains only the point in black.

7



CHAPTER 2. BASIC TOPOLOGY 8

Figure 2.2: E contains the central dotted circle and the points in black.

Theorem 2.33. Suppose K ⊆ Y ⊆ X. Then, K is compact relative to X if and
only if K is compact relative to Y .

Proof. When K is compact relative to X, let {Fα} be an open cover in Y . By
theorem 2.30, there is an open cover {Gα} in X containing a finite subcover {Gαn},
for which Y ∩Gα is always Fα. So, {Fαn} is a finite subcover of {Fα}.
Conversely, assume K is compact relative to Y and let {Gα} be an open cover in
X. Then, {Y ∩Gα} is an open cover in Y . As such, it contains a finite subcover
{Y ∩Gαn} in Y ⊆ X.

Theorem 2.34. Compact subsets of metric spaces are closed.

Proof. Let x ∈ E∁ be a limit point of E. Now, define the open cover

C := {Nd(x,p)/2(p) | p ∈ E}.

Given any finite subset {Nd(x,p)/2(pi) | 1 ≤ i ≤ n}, fix m > 0 as the minimum
distance x is from all such pi. Then, there is a point υ in E such that d(x, υ) < m/2.
No finite subcover of C exists; hence E is not compact.

Theorem 2.35. Any closed subset of a compact set is compact.

Proof. Let E be a closed subset of the compact set F , and {Gα} be an open cover
of E. Then, F has a finite subcover {Gαn ∪ E∁}. So, {Gαn} must be a finite
subcover of E.

Theorem. Finite unions of compact sets are compact.
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Proof. Let {Ki}ni=1 contain only compact sets, and {Gα} be an open cover of
K :=

⋃
i
Ki. Each Ki has a finite subcover {Gαij | 1 ≤ j ≤ mi}. So,

{Gαij | 1 ≤ i ≤ n and 1 ≤ j ≤ mi}

is a finite subcover of K.

Note. Infinite unions of compact sets aren’t necessarily compact.

Example. Consider the metric space R. Clearly, each singleton set {x} is compact.
But since the set

(0, 1] =
⋃{

{x}
∣∣x ∈ (0, 1]

}
does not contain the limit point 0, it is not compact.

Theorem 2.36. If {Kα} is a collection of compact subsets of a metric space X such
that the intersection of every finite subcollection of {Kα} is nonempty, then

⋂
αKα

is nonempty.

Proof. Assume, for contradiction, that finite intersections in {Kα} are nonempty,
but

⋂
αKα = ∅. Since {Kα} can’t be empty, there is some Kβ . It has the open

cover
{
K∁

α

}
.

Consider any finite subset
{
K∁

i

}
. Then, it is disjoint from the nonempty set

Kβ ∩⋂iKi. As such, Kβ is not compact. A contradiction.

Corollary. Let {Kα} be a set of closed sets, at least one of which is compact, such
that {Kα} has the finite intersection property. Then,

⋂
αKα is nonempty.

Proof. Wlog, K0 is compact. Then, {K0∩Kα} is a set of nonempty compact sets.
Hence, the preceeding theorem says

⋂
αKα is nonempty.

Definition. We say that a set (E, d) is globally closed iff for all supersets (X, d′) of
(E, d) (such that there is an isometric embedding of (E, d) in (X, d′)), we have that
E is closed relative to X.

Claim. If a set (E, d) is globally closed, it is compact.

Here is a counterexample.

Example. Consider the non-compact metric space N under the Euclidean norm.
Suppose, for contradiction, that there exists some superset X in which N is not
closed (such that there is an isometric embedding of N in X).
Let p be such a limit point. So, there exists n2 < n3, such that d(n2, x) and d(n3, x)
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are less than 1/2. Consequently,

d(n2, x) + d(x, n3) < 1 ≤ d(n2, n3).

A contradiction.

Thus, compactness is quite a strong condition; it is stronger than even global closure!

Theorem 2.37. If E is an infinite subset of a compact set K, then E has a limit
point in K.

Proof. Suppose, for contradiction, that there exists a subset E of some compact
set K, without a limit point in K. As such, E is closed. Hence, it is compact.
Since E contains no limit points, for each p ∈ E there is a minimum distance
mp, such that mp ≤ d(p, q) for all q ∈ E (that isn’t p). But now the open cover
{Nmp/2(p) | p ∈ E} has no finite subcover. A contradiction.

Theorem 2.38. If {In}∞n=1 is a sequence of closed intervals in R, such that In+1 ⊆
In, then

⋂
n In is nonempty.

Proof. Let In = [an, bn]. Then, an ≤ sup{an}∞n=1 ≤ bn for all n.

Theorem 2.39. Let k be a positive integer. If {In} is a sequence of k-cells such
that In+1 ⊆ In, then

⋂
n In is nonempty.

Proof. Similarly, let In be the k-cell of elements (x1, x2, . . . , xk), such that ani ≤
xi ≤ bni. Also let si := sup{ani}∞n=1. Notice that ani ≤ si ≤ bni for all n and i.
That is, (s1, s2, . . . , sk) ∈

⋂
n In.

Theorem 2.40. Every k-cell is compact.

Proof. Let {Gα} be an open cover of a k-cell I.
Notice that for each x ∈ I, there exists m(x) > 0, such that Nm(x)(x) is contained
in some Gα and

m(x) >
1

2
sup{r |Nr(x) ⊆ Gα for some α}.

Suppose, for contradiction, that ℓ := inf{m(x) |x ∈ E} = 0. By AC, we can
choose a sequence {xn}∞n=1 for which xn := (x1n, x2n, . . . , xkn) and m(xn) < 1/n.
By iteratively applying Bolzano-Weierstrass, there exists a subsequence {xnk

}∞k=1

such that si := limk→∞ xnk
always exists. Let s ∈ I be the point whose ith
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coordinate is si. So, for some n ∈ N, we have 2m(xn) < m(s), satisfying

|si − xin| <
1√
k

(
m(s)− 2m(xn)

)
.

Hence,

k∑
i=1

(si − xin)
2 <

k∑
i=1

1

k

(
m(s)− 2m(x)

)2
=
(
m(s)− 2m(xn)

)2
.

That is, |s− xn| < m(s)− 2m(xn). Now for each |xn − q| < 2m(xn),

|s− q| ≤ |s− xn|+ |xn − q| < m(s)− 2m(xn) + 2m(xn) = m(s).

As such, N2m(xn)(xn) is contained in the same Gα as Nm(s)(s). But by definition

2m(xn) > sup{r |Nr(x) ⊆ Gα for some α},

a contradiction.
Consequently, ℓ > 0 so there exists a finite number of neighbourhoods (of radius
ℓ), each contained in some Gαn , that covers I.

Oh, actually I probably don’t need to use Bolzano-Weierstrass. It’s pretty clear that
there must be coordinate-wise convergence, in order for {xn}∞n=1 to converge.

Theorem 2.41. If a set in Rk has one of the following properties, then it has the
other two:

(a) E is closed and bounded.
(b) E is compact.
(c) Every infinite subset of E has a limit point in E.

Proof.
i. Assume (a) is true. Then, let

ai := inf{xi | (x1, x2, . . . , xk) ∈ Rk} and bi := sup{xi | (x1, x2, . . . , xk) ∈ Rk}.

Now, E is a closed subset of the k-cell of points (x1, x2, . . . , xk), such that
ai ≤ xi ≤ bi. Since k-cells are compact, so is E. That is, (b) holds.

ii. Now suppose (b) is valid. Thus, (c) follows immediately from theorem 2.37.
iii. Finally, we presume (c) to be true. If E is unbounded, then (using AC) we can

construct a sequence {xn}∞n=1 of points, such that |xn+1| > |xn|+1 for all n.
Hence, it is clear that {xn |n ∈ N} contains no limit points. A contradiction.
Similarly, when p /∈ E is a limit point of E, there is a sequence {yn}∞n=1,
with |p − yn| < 1/n. Therefore, {yn |n ∈ N} also has no limit points in E.
Again, this is impossible; (a) must hold.
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Question. When a set is unbounded, must it be non-compact?

Proof. Yes. Consider an unbounded metric space X and choose a point x ∈ X.
Then, the open cover {Nn(x)} of X has no countable subcover.

Theorem 2.42. Every bounded infinite subset of Rk has a limit point in Rk.

Proof. Let K be a bounded infinite subset of Rk. Then, its closure K is compact.
Hence, there exists a limit point of K. This is also a limit point of K.

Theorem 2.43. Let P be a nonempty perfect set in Rk. Then P is uncountable.

Proof. Suppose, for contradiction, that P is countable. Notice P is complete as it
is closed in Rk (see note). We consider the metric space P (rather than Rk). First
fix a bijection f : N → P and Gn := P − {f(n)}. Then, since N|g−f(n)|(g) ⊆ Gn

for every g ∈ Gn, each Gn is an open dense subset of P . Consequently, Baire’s
Theorem (3.22) says

⋂
Gn is nonempty, but this is impossible.

Note. Two separated subsets A and B of a metric space X do not have to satisfy
A ∩B = ∅. Consider A = (0, 1) and B = (1, 2).

Theorem 2.47. A subset E of the real line R is connected iff it has the following
property: If x, y ∈ E and x < z < y, then z ∈ E.

Proof. Suppose there exists x, y ∈ E and z /∈ E, such that x < z < y. Then,
E ∩ (−∞, z) and E ∩ (z,∞) are separated sets that partition E. Therefore, E is
not connected.
Consider when E satisfies the given property, and let A,B ⊆ E be two nonempty
separated sets. Wlog, α < β for some α ∈ A and β ∈ B. Define

s := sup{a ∈ A |α ≤ a < β} and i := inf{b ∈ B | s < b}.

Notice that s ≤ s+i
2 ≤ i. Hence, s+i

2 /∈ A ∪ B. (Otherwise s+i
2 ≤ s or i ≤ s+i

2 . So
s = s+i

2 = i, implying A and B are not separate.) i.e. E ̸= A ∪B.

Exercise. (JohnDS’s Exercise) Let X be a metric space. Prove the following are
equivalent.

(1) E ⊆ X is dense.
(2) For every ε > 0 and all x ∈ X, there is an p ∈ E such that d(x, p) ≤ ε.
(3) The closure of E is X.
(4) For every x ∈ X, there is a sequence {pn}∞n=1 in E, such that x = limn→∞ pn.
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Proof. Clearly, (3) implies (1).
Now assume (1) is true. Pick any x ∈ X and ε > 0. If x ∈ E, simply let p = x.
Otherwise, x is a limit point of E. Thus, such p exists by definition. As such, (2)
holds.
Suppose (2) is true. By AC, there is a sequence {pn}∞n=1 with d(x, pn) < 1/n. That
is, x = limn→∞ pn. So, (4) holds.
Presume (4) is satisfied. When pn = x for some n, we know x ∈ E. Otherwise, pn
is never x, which means x is a limit point of E. Consequently, (3) holds true.

§2.2 Hw 3

Exercise 2.5. Construct a bounded set of real numbers with exactly three limit
points.

Proof. Let E := {1/n, 2/n, 3/n |n ∈ Z+}. By the Archimedean property,
{1, 2, 3} ⊆ E′. In fact, equality is clear: the neighbourhood of any i/n (for n ≥ 2)
with radius

min

{
i

n− 1
− i

n
,
i

n
− i

n+ 1

}
is disjoint from E.

Exercise 2.6. Let E′ be the set of all limit points of a set E. Prove that E′ is
closed. Prove that E and E have the same limit points. (Recall that E = E ∪E′.)
Do E and E′ always have the same limit points?

Proof. Let p be a limit point of E′. So, for any r > 0, there is q ∈ Nr(p) ∩ E′.
Hence, letting m := min{d(p, q), r−d(p, q)}, there is also s ∈ Nm(q)∩E. As such,
p is a limit point of E, since

0 < d(p, s) ≤ d(p, q) + d(q, s) < r.

Similarly, any limit point of E is a limit point of E. The converse is clear from
E ⊆ E.
However, limit points of E are not necessarily limit points of E′. For instance, let
E := {1/n |n ∈ Z+} ⊆ R. Then, E′ = {1} whilst E′′ = ∅.

Exercise 2.8. Is every point of every open set E ⊆ R2 a limit point of E? Answer
the same question for closed sets in R2.

Proof. Yes, every point p of an open set E ⊆ R2 is a limit point of E. There is
m > 0 with Nm(p) ⊆ E. Thus, for any r > 0, the set Nr(p)∩E must be nonempty,
for it contains the nonempty set Nr(p) ∩Nm(p).
But this does not extend to closed sets in R2. Consider the closed set {1}; it has
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no limit points.

Exercise 2.10. Let X be an infinite set. For p ∈ X and q ∈ X, define

d(p, q) =

1 (if p ̸= q)

0 (if p = q).

Prove that this is a metric. Which subsets of the resulting metric space are open?
Which are closed? Which are compact?

Proof. Notice that (a) and (b) holds immediately, and (c) is clear as d(p, r)+d(r, q)

is either 1 or 2. Therefore, d is a metric on X.
Let E ⊆ X and p ∈ E. Observe that N1/2(p) = {p} ⊆ E. All subsets of X must
be open, and, with exception of ∅, be not closed.
Lastly, E is compact iff E is finite. If E is compact but infinite, then the open
cover of singleton subsets of E (i.e. {{p} | p ∈ E}) has no finite subcover. The
converse is clear as this open cover is already finite.

Exercise 2.11. For x ∈ R1 and y ∈ R1, define

d1(x, y) = (x− y)2,

d2(x, y) =
√

|x− y|,
d3(x, y) = |x2 − y2|,
d4(x, y) = |x− 2y|,

d5(x, y) =
|x− y|

1 + |x− y| .

Determine, for each of these, whether it is a metric or not.

Proof.
(a) Since (1− 0)2 = 1 is larger than (1− 0.5)2 + (0.5− 0)2 = 0.5, we have that

d1 is not a metric.
(b) Parts (a) and (b) are immediate. Moreover, (c) also holds, because for any

real numbers x, y and z:

|x− y| ≤ |x− z|+ 2
√

|x− z||z − y|+ |z − y|,√
|x− y| ≤

√
|x− z|+

√
|z − y|.

That is, d2 is a metric.
(c) Part (a) doesn’t hold as |12 − (−1)2| = 0. Hence, d3 is not a metric.
(d) Part (a) doesn’t hold as |1− 2(0.5)| = 0. Therefore, d4 is not a metric.
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(e) Again, parts (a) and (b) are clear. Notice

|x− y| ≤ |x− z|+ |z − y|+ 2|x− z||z − y|+ |x− y||x− z||z − y|.

Hence, adding |x − y||x − z| + |x − y||z − y| + |x − y||x − z||z − y| to both
sides, then factoring,

|x− y|(1 + |x− z|)(1 + |z − y|) ≤ (|x− z|+ 2|x− z||z − y|+ |z − y|)
(1 + |x− y|).

Therefore,
|x− y|

1 + |x− y| ≤
|x− z|

1 + |x− z| +
|z − y|

1 + |z − y| .

Accordingly, d5 is a metric.

§2.3 Hw 4

Exercise 2.12. Let K ⊆ R consist of 0 and the numbers 1/n, for n = 1, 2, 3, . . ..
Prove that K is compact directly from the definition (without using the Heine-Borel
Theorem).

Proof. Let {Gα} be an open cover of K. Then, N1/n(0) ⊆ Gαn+1 , for some n ∈ N
and αn+1. Furthermore, given any 1 ≤ i ≤ n, there exists αi for which 1/i ∈ Gαi .
Hence, {Gαi | 1 ≤ i ≤ n+ 1} is a finite subcover.

Exercise 2.16. Regard Q := as the set of all rational numbers, as a metric space,
with d(p, q) = |p − q|. Let E be the set of all p ∈ Q such that 2 < p2 < 3. Show
that E is closed and bounded in Q, but that E is not compact. Is E open in Q?

Proof. Notice |p− q| is always less than
√
3−

√
2. Now consider any limit point l

of E. Then 2 ≤ l2 ≤ 3, lest N|l−
√
2|(l) or N|l−

√
3|(l) is disjoint from E. Since there

is no rational square root of 2 or 3, we have l ∈ E.
We have that E is not closed relative to R, since the limit point

√
2 /∈ E. Thus, E

is not compact.
Finally, E is indeed open in Q, because for all p ∈ E, either N|p−

√
2|(p) or

N|p−
√
3|(p) is contained in E.

Exercise 2.17. Let E be the set of all x ∈ [0, 1] whose decimal expansion contains
only the digits 4 and 7. Is E countable? Is E dense in [0, 1]? Is E compact? Is E

perfect?
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Proof. Let a = 0.4777 . . . and b = 0.7444 . . .

An a ≤ x ≤ b cannot be obtained by changing only the first digit, since

0.777 · · · > b > a and 0.444 · · · < a < b.

It also can’t be obtained by changing the first digit and some others, as

0.777 . . . 74 ≥ b > a and 0.444 . . . 47 ≤ a < b.

(The digits, after what has been written out explicitly, are omitted.)
Nor does keeping the first digit the same:

0.4777 . . . 74 < a < b and 0.7444 . . . 47 > b > a

Hence no such x exists; E is not dense.
Let the decimal expansion of the limit point L contain some other digit not 4 or 7,
first in the jth digit. Then, there exists c ∈ E such that |c− L| < 10−j . But now

1 > 10j |c− L| ≥ 1.

A contradiction. As such, E must be closed, and hence compact.
Furthermore, E is perfect, thus uncountablea. For any y ∈ E, define y(i) to be the
ith digit of y, and

y[i] :=

4 if y(i) = 7,

7 if y(i) = 4.

So, let zn be the number whose ith digit is y(i) if 1 ≤ i ≤ n, and y[i] otherwise.
Then, for each n we have

|y − zn| <
4

10n+1
<

1

10n
.

aAlternatively, we can use diagonalization, or the fact that N{4, 7} ≈ P(N) ≻ N.

Exercise 2.22. A metric space is called separable if it contains a countable dense
subset. Show that Rk is separable.

Proof. Let x = (x1, x2, . . . , xk) ∈ Rk. Recall Q is dense in R. So, for each i, there
exists |xi − pi| < ε√

k
. Therefore,

|x− p| =

√√√√ k∑
i=1

(xi − pi)2 <

√√√√ k∑
i=1

ε2

k
= ε.

Since Rk contains the countable dense subset Qk, it is separable.
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Example. Consider [0, 1] and the countable base

{Nr(p) ⊆ [0, 1] | p, r ∈ Q}.

Let x be a point in some open subset S of [0, 1]. Accordingly, Nε(x) ⊆ S for some
ε > 0. Furthermore, ε/2 > n−1 for some n ∈ N. By the density of the rationals in
the reals, there exists some rational |p− x| < n−1. Consequently,

x ∈ Nn−1(p) ⊆ Nε(x) ⊆ S.

Exercise 2.25. Prove that every compact metric space K has a countable base, and
that K is therefore separable.

Proof. For each n, let {Nn−1(xi,n) | 1 ≤ i ≤ mn} be a finite subcover of
{Nn−1(x) |x ∈ K}. Fix ε > 0 and x ∈ K. So, there exists n and i, for which
ε/2 > n−1 and x ∈ Nn−1(xi,n). Hence Nn−1(xi,n) ⊆ Nε(x). As such,⋃

n

{Nn−1(xi,n) | 1 ≤ i ≤ mn}

is a countable base. Furthermore, x is a limit point of the countable dense subset⋃
n

{xi,n | 1 ≤ i ≤ mn},

if it is not some xi,n.

§2.4 Hw 5

Exercise 2.27. Define a point p in a metric space X to be a condensation point of
a set E ⊆ X if every neighbourhood of P contains uncountably many points of E.
Suppose E ⊆ Rk, E is uncountable, and let P be the set of all the condensation
points of E. Prove that P is perfect and that at most countably many points are
not in P . In other words, show that P ∁ ∩ E is at most countable.

Proof. We consider E as our metric space for this proof. Let x be a limit point
of P and ε > 0. Then, there exists p ∈ P with |x − p| < ε/2. For each of the
uncountably many |p− q| < ε/2, we have |x− q| ≤ |x− p|+ |p− q| < ε. So, P is
closed. Since it is clear that P contains only limit points of itself, P is perfect.
Now suppose, for contradiction, that P ∁ ∩ E is uncountable. Let n ∈ N and
rn := 0.5n/n. For some point en ∈ Nrn−1(en−1), the neighbourhood Nrn(en) is
uncountable. Otherwise, Nrn−1(en−1) would be countable, since

{Nrn−1(en−1) ∩Nrn(m1rn,m2rn, . . . ,mkrn) |m1,m2, . . . ,mk ∈ N}
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covers Nrn−1(en−1). Therefore, {en} is Cauchy, since

d(en, em) ≤
m−1∑
i=n

d(en, en+1) ≤
∞∑
i=1

0.5i

N
=

1

N
,

for every n ≥ m ≥ N . By the completeness of Rk, it converges to some limit e.
Furthermore, it is clear that e is a condensation point.



Chapter 3

Numerical Sequences and Series

§3.1 Hw 5

Exercise 3.1. Prove that the convergence of {sn} implies the convergence of {|sn|}.
Is the converse true?

Proof. Let {sn} be a sequence in a metric space X converging to x, and y any
point of X. For ε > 0, there exists N ∈ N such that n ≥ N implies d(sn, x) < ε.
So by the triangular inequality,

|d(sn, y)− d(x, y)| ≤ d(sn, x) < ε.

Hence, {d(sn, y)} converges to d(x, y).
The converse cannot hold. A counterexample is the alternating series.

Exercise 3.2. Calculate limn→∞(
√
n2 + n− n).

Proof. Let ε > 0 and c := 1/2 − ε. Notice that n2 + n + 1/4 > n2 + n implies
1/2−

(√
n2 + n− n

)
> 0. Moreover, there is some N > c2

1−2c . So, for n ≥ N ,

c2

1− 2c
< n,

n2 + 2cn+ c2 < n2 + n,

n+ c <
√
n2 + n,∣∣∣∣12 −

(√
n2 + n− n

)∣∣∣∣ < ε.

In other words, limn→∞(
√
n2 + n− n) = 1/2.

19
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Exercise 3.3. If s1 =
√
2, and

sn+1 =
√
2 +

√
sn (n = 1, 2, 3, . . . ),

prove that {sn} converges, and that sn < 2 for n = 1, 2, 3, . . .

Proof. Notice that
√
2 +

√
2 <

√
4 = 2. So, assume sn ≤ 2 for n = k, and consider

n = k + 1. Thus,

sn+1 ≤
√

2 +
√
2 < 2.

That is, sn is always less than 2.
Furthermore, since {sn} is nonnegative, it is monotonically increasing. By the
Monotone Sequence Theorem (3.14), {sn} converges.

§3.2 Theorems

The following exercises were suggested by DarQ (or, xxdarqxx). The first is exercise
2.4.7 of Abbott.

Exercise (Limit Superior). Let {an} be a bounded sequence.
(a) Prove that the sequence defined by yn := sup{ak | k ≥ n} converges.
(b) The limit superior of {an}, or lim sup an, is defined by

lim sup an := lim yn,

where yn is the sequence from part (a) of this exercise. Provide a reasonable
definition for lim inf an and briefly explain why it exists for any bounded
sequence.

(c) Prove that lim inf an ≤ lim sup an for every bounded sequence, and give an
example of a sequence for which the inequality is strict.

(d) Show that lim inf an = lim sup an if and only if lim an exists. In this case, all
three share the same value.

Proof.
(a) Let ε > 0. For L := inf{yn |n ∈ N}, recall there exists N ∈ N such that

yN − L < ε. So for n ≥ N , since {yn} is clearly nonincreasing,

yn − L ≤ yN − L < ε.

Hence, lim yn = L.
(b) We can define zn := inf{ak | k ≥ n}, and hence,

lim sup an := lim zn.

This exists for any bounded sequence {an}, because it is just sup{yn |n ∈ N}.
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The proof is similar to that of (a).
(c) Clearly, yn ≥ zn for each n ∈ N. Accordingly, lim yn ≥ lim zn. i.e.

lim sup an ≥ lim inf an.

An example for which the strict inequality lim sup an > lim inf an holds. For
the sequence {(−1)n}, we see that

lim sup(−1)n = 1 > −1 = lim inf(−1)n.

(d) Suppose L := lim sup an = lim inf an and let ε > 0. Recall the above results:

lim sup an = inf{yn |n ∈ N} and lim inf an = sup{zm |m ∈ N}.

There hence exists N,M ∈ N such that

ak − L < yN − L < ε and L− ak < L− zM < ε

for any k ≥ max{N,M}. i.e. |ak − L| < ε. So, lim ak = L.
Conversely, assume L = lim ak exists, and again, let ε > 0. Pick K ∈ N,
such that |ak − L| < ε/2 for all k ≥ K. Notice that for each k ≥ K, there is
j ≥ k with |yk − aj | < ε/2. As such,

|yk − L | ≤ |yk − aj |+ |aj − L | < ε.

In other words, L = lim sup ak. It can be similarly shown that L =

lim inf ak.

Exercise. Prove that the definitions of lim sup and lim inf in Rudin and
Schröder/Abbott are equivalent.
That is, let {sn} be a sequence of real numbers, and E the set of numbers x (in
the extended real number system) such that snk

→ x for some subsequence {snk
}.

Now define s∗ := supE and s∗ = inf E. Also define yn := sup{ak | k ≥ n} and
zn := inf{ak | k ≥ n}; s◦ := lim yn and s◦ := lim zn. Then, it holds that

s∗ = s◦ and s∗ = s◦.

Proof. If {sn} is unbounded from above, then s∗ = s◦ = ∞ is trivial. So, consider
when {an} is bounded above. For each k ∈ N, pick Nk ∈ N such that |yNk

− s◦| <
1
2k . Furthermore, since yn is supremal, |yNk

−ank
| < 1

2k for some nk ≥ Nk. Hence,
|ank

− s◦| < 1
k . As such, the subsequencea {ank

} converges to s◦. Therefore,
s∗ ≥ s◦ ∈ E.
To prove s∗ ≤ s◦, first choose any subsequence {ank

} that converges to some limit
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x. Then, it is clear that ym ≥ x for all m ∈ N, because ym bounds the subsequence
{anm+k

} from above. Accordingly, s◦ ≥ s∗.
Consequently, equality holds. The proof of s∗ = s◦ is similar.

aSince we can just choose the least such Nk and nk, AC is not necessary here.

Theorem 3.33 (Root Test). Given
∑

an, put α := lim sup n
√

|an|. Then,
(a) if α < 1, then

∑
an converges;

(b) if α > 1, then
∑

an diverges;
(c) if α = 1, the test gives no information.

Proof.
(a) First assume α < 1. We pick K ∈ N, such that

α+ 1

2
> sup

{
k
√
|ak|

∣∣∣ k ≥ K
}

Then,
(
α+1
2

)k
> |ak| for all k ≥ K. So, by the comparison test (thm 3.25)∑

an converges absolutely.
(b) Now suppose α > 1. Then, there is a subsequence nk

√
|ank

| → α. Choose
K ∈ N, such that nk

√
|ank

| > 1 whenever k ≥ K. Thus, |ank
| > 1. This

implies an ̸→ 0. So
∑

an must diverge.

Theorem 3.34 (Ratio Test). The series
∑

an

(a) converges if lim sup

∣∣∣∣an+1

an

∣∣∣∣ < 1,

(b) diverges if
∣∣∣∣an+1

an

∣∣∣∣ ≥ 1 for all n ≥ n0, where n0 is some fixed integer.

Proof.
(a) First assume α := lim sup

∣∣∣∣an+1

an

∣∣∣∣ < 1. Then, pick K ∈ N such that

β :=
α+ 1

2
> sup

{∣∣∣∣ak+1

ak

∣∣∣∣ ∣∣∣∣ k ≥ K

}
.

Then, |ak+1| < β|ak| for every k ≥ K. So, |aK+n| < βn|aK |. By the
comparison test (thm 3.25),

∑
an converges absolutely.

(b) Now suppose
∣∣∣∣an+1

an

∣∣∣∣ ≥ 1 for all n ≥ n0. i.e. |an| ≥ |an0 |. Then, an ̸→ 0 so∑
an is divergent.

Question. Is it possible for the root test to fail, but for the ratio test to be conclu-
sive? Is there such a series, which (a) converges? (b) diverges?
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Proof. Yes it is possible. Clearly, the alternating series {∑(−1)n} fails the root
test, but the ratio test tells us it diverges.
But, no such convergent series can be found. Suppose a series

∑
an converges by

the ratio test. We use the notation of the above proof (for thm 3.34). Notice that

lim sup n
√

|aK+n| ≤ lim supβ n
√

|aK | = β < 1.

Hence, the root test also says (
∑

aK+n and therefore)
∑

an converges.

Question. Is it possible for the ratio test to fail, but for the root test to be conclu-
sive? Is there such a series, which (a) converges? (b) diverges?

Proof. Yes it is possible.
(a) Consider the sequence defined by a2n+1 := a2n := 2−n. Since a2n+1

a2n
= 1

and a2n
a2n−1

= 1
2 for every n ∈ N, we notice the ratio test fails. However, as

lim sup
n
√
2−2n = 1/4, the root test tells us the series

∑
an is convergent.

(b) Now let b2n := 2−n and b2n+1 := 2n. Then,
∣∣∣ b2n+1

b2n

∣∣∣ = 22n and
∣∣∣ b2n
b2n−1

∣∣∣ = 21−2n.

Hence, the ratio test is inconclusive. But since lim sup n
√
|bn| = lim

√
2
n
=

∞, the root test implies the series
∑

bn diverges.

Question. Is it possible for the root and ratio tests to fail simultaneously? Is there
such a series, which (a) converges? (b) diverges?

Proof. Yes, it is possible. They both fail for the alternating harmonic series{∑ (−1)n

n

}
(which converges) and harmonic series

{∑ 1
n

}
(which diverges).

Let ε > 0. Since (ε+ 1)k > 1 + kε → ∞, we see that

(k + 1)− k

(ε+ 1)k − (ε+ 1)k−1
=

1

ε(ε+ 1)k−1
→ 0.

By the Stolz-Cesaro theorem, we pick K ∈ N such that k + 1 < (ε + 1)k, for
every k ≥ K. Simplifying this gives k

√
k + 1 − 1 < ε. Hence, k

√
k + 1 → 1, i.e.

k

√
1

k+1 → 1. As claimed, the root test fails.
The ratio test also fails as lim sup n

n+1 = 1, but n
n+1 = 1 − 1

n+1 < 1 for all
n ∈ N.

Theorem 3.37. For any sequence {cn} of positive numbers,

lim inf
cn+1

cn
≤ lim inf n

√
cn,

lim sup n
√
cn ≤ lim sup

cn+1

cn
.
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Figure 3.1: The interplay between the root and ratio tests.

Proof. Let α := lim sup cn+1

cn
and ε > 0. Then, pick K ∈ N, such that

α+ ε > sup

{
ck+1

ck

∣∣∣∣ k ≥ K

}
.

As such, ck+1 < (α+ ε)ck for each k ≥ K. That is, cK+n < (α+ ε)ncK . So,

0 ≤ K+n
√
cK+n < (α+ ε)

n
K+n K+n

√
cK → α+ ε.

This implies
lim sup n

√
cn = lim sup K+n

√
cK+n ≤ a+ ε.

Consequently, lim sup n
√
cn ≤ lim sup cn+1

cn
. The proof for lim inf cn+1

cn
≤ lim inf n

√
cn

is similar.

Question. Are there series {an} and {bn} for which

lim sup(an + bn) < lim sup an + lim sup bn?

Proof. Yes, consider an := (−1)n and bn := −(−1)n. Then, we note that

lim sup(an + bn) = 0 and lim sup an + lim sup bn = 1 + 1 = 2.

Question. Is there a series {an} such that lim sup

∣∣∣∣an+1

an

∣∣∣∣ = 0?

Proof. Yes, let an := 0.5x!. Then, lim sup

∣∣∣∣an+1

an

∣∣∣∣ = 0.5(x+1)!

0.5x!
= 0.5x+1 = 0.
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Exercise. Assume that absolute convergence implies convergence in an ordered field
F. Then, is F complete?

Theorem 3.42 (Dirichlet’s Test). Suppose
(a) the partial sums An of

∑
an form a bounded sequence;

(b) b0 ≥ b1 ≥ b2 ≥ · · · ;
(c) lim bn = 0.

Then,
∑

anbn converges.

Proof. Let ε > 0 and fix an upper bound B > 0 of |An|. We pick N ∈ N, such that

bm − bn <
ε

2B and |bm| < ε

4B ,

for n ≥ m ≥ N . Then, using summation by parts (thm 3.41),∣∣∣∣∣∣
n∑

j=m

ajbj

∣∣∣∣∣∣ ≤
n−1∑
j=m

|Aj ||bj − bj+1|+ |An||bn|+ |Am−1||bm|

≤ B
n−1∑
j=m

(bj − bj+1) + 2B|bm|

= B(bm − bn) + 2B|bm|
< B · ε

2B + 2B · ε

4B = ε.

Consequently,
∑

anbn converges absolutely.

Theorem 8.29 of Tom Apostol’s Mathematical Analysis:

Exercise (Abel’s Test). The series
∑

anbn converges if
∑

an converges and if {bn}
is a monotonic convergent sequence.

Proof. Suppose that
∑

an converges and {bn} is a monotonic convergent sequence.
Hence, limit laws imply {Anbn} and {An−1bn} converge to a common limit L.
Thus, lim(Anbn − An−1bn) = 0. Now, let ε > 0 and B be an upper bound of
An :=

∑n
k=0 ak. So, pick N ∈ N, such that

|Anbn −Ambm| < ε

3
, |Ambm −Am−1bm| < ε

3
, and |bm − bn| <

ε

3B

for n ≥ m ≥ N . Therefore,∣∣∣∣∣∣
n∑

j=m

ajbj

∣∣∣∣∣∣ ≤
n∑

j=m

|Aj ||bj − bj+1|+ |Anbn −Am−1bm|

≤ B|bm − bn|+ |Anbn −Ambm|+ |Ambm −Am−1bm|
< B · ε

3B +
ε

3
+

ε

3
= ε.
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As such,
∑

anbn converges.

§3.3 Hw 6

Exercise 3.6. Investigate the behavior (convergence or divergence) of
∑

an if
(a) an =

√
n+ 1−√

n;

(b) an =

√
n+ 1−√

n

n
;

(c) an = ( n
√
n− 1)

n;

(d) an =
1

1 + zn
, for complex values of z.

Proof.
(a) Notice the partial sums simplify as follows:

n∑
i=1

ai =
n+1∑
i=2

√
i−

n∑
i=1

√
n =

√
n+ 1− 1.

Hence, the series
∑

an diverges to ∞.
(b) This series converges by (a) and the comparison test.
(c) Since lim sup n

√
n−1 = 1−1 = 0, the root test ensures

∑
( n
√
n−1)n converges.

(d) If |z| > 1, then ∣∣∣∣ 1 + zn

1 + zn+1

∣∣∣∣ =
∣∣∣∣∣ 1
zn+1 + 1

z
1

zn+1 + 1

∣∣∣∣∣→ 1

|z| < 1.

Hence, the ratio test implies
∑

an converges. But when |z| ≤ 1, then 1
1+zn ̸→

0 by limit laws, i.e.
∑

an is divergent.

Exercise 3.7. Prove that the convergence of
∑

an implies the convergence of

∑ √
an
n

,

if an ≥ 0.

Proof. Notice that an ≥ 1/n2 and an ≤ 1/n2 respectively imply an ≥ √
an/n and

1/n2 ≥ √
an/n. So, ∑ √

an
n

≤
∑

an +
∑ 1

n2

converges.

Exercise 3.11. Suppose an > 0, sn = a1 + · · ·+ an, and
∑

an diverges.
(a) Prove that

∑ an
1+an

diverges.
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(b) Prove that
aN+1

sN+1
+ · · ·+ aN+k

sN+k
≥ 1− sN

sN+k

and deduce that
∑ an

sn
diverges.

(c) Prove that
an
s2n

≤ 1

sn−1
− 1

sn

and deduce that
∑ an

s2n
converges.

(d) What can be said about∑ an
1 + nan

and
∑ an

1 + n2an
?

Proof.
(a) Suppose, for contradiction, that

∑ an
1+an

converges. Then, since an > 0

and an
1+an

= 1 − 1
1+an

, the sequence {1 + an} is (eventually) nonincreasing,
converging to 1. As such, Abel’s Test implies

∑
an =

∑ an
1+an

· (1 + an)

converges. A contradiction.
(b) Let N ∈ N. Because sn → ∞, there is a k ∈ N with sN+k > 2sN . Further-

more, {sn} is increasing. Hence,

aN+1

sN+1
+ · · ·+ aN+k

sN+k
≥ aN+1 + · · ·+ aN+k

sN+k
= 1− sN

sN+k
>

1

2
.

i.e.
∑ an

sn
diverges (to infinity).

(c) Again, {sn} is increasing. Thus,

an
s2n

≤ an
snsn−1

=
1

sn−1
− 1

sn

holds for every n ∈ N. Now let ε > 0 and pick N ∈ N, such that sm > 1/ε if
m ≥ N . Then,

n∑
j=m+1

aj
s2j

≤
n∑

j=m+1

1

sj−1
− 1

sj
=

1

sm
− 1

sn
≤ 1

sm
< ε.

The Cauchy Criterion is, therefore, met;
∑ an

s2n
converges.

(d) If there is a lower bound l > 0 of {an}, then

an
1 + nan

=
1

n

(
1− 1

1 + nan

)
≥ 1

n

(
1− 1

1 + l

)
.

By the p-series test (thm 3.28),
∑ an

1+nan
→ ∞. When an → 0, it is still

possible for divergence to occur: consider an := 1/n. Then,

∑ an
1 + nan

=
∑ 1

2n
→ ∞.
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But, convergence can, too, occur. We let

an :=

1 if n = 2k for some integer k,

1
n2 otherwise.

Then, ∑
an ≥

∑
1 = ∞.

Simultaneously,

∑ an
1 + nan

≤
∑ 1

n(n+ 1)
+
∑ 1

1 + 2n
≤
∑ 1

n2
+
∑ 1

2n
.

So,
∑ an

1+nan
must converge. For an illustration, see Figure 3.2.

The latter series is simpler. Since

∑ an
1 + n2an

=
∑ 1

n2

(
1− 1

1 + n2an

)
≤
∑ 1

n2
,

convergence is evident.

Note. Since bn := an
1+nan

= 1
n

(
1− 1

1+nan

)
, we might be tempted to think that

nan → 0 for
∑

bn to converge. But, our example above shows that this is unnec-
essary; we even had lim sup an = lim sup 2n = ∞. It is, however, necessary for
lim inf an = 0, lest the series diverges by the comparison test.

Naturally, this leads us to the following question:

Question. Let {an} be a positive sequence, such that
∑

an → ∞.
(a) Is it possible for nan → 0?
(b) If so, is it plausible that we simultaneously have∑ an

1 + nan

converging?

Proof.
(a) Yes, simply let an := (n log n)−1.
(b) No. Suppose (a) holds and pick N ∈ N, such that nan < 1, for all n ≥ N .

Then,
an

1 + nan
>

1

2
an.

Hence, (b) cannot hold:

∑ an
1 + nan

≥ 1

2

∑
n≥N

an = ∞.
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Figure 3.2: An illustration for when
∑

an (blue) diverges and
∑ an

1+nan
(green) converges

(Desmos).

https://www.desmos.com/calculator/6goodolo2a
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Exercise 3.12. If {sn} is a complex sequence, define its arithmetic means σn by

σn =
s0 + s1 + · · ·+ sn

n+ 1
(n = 0, 1, 2, . . . ).

(a) If lim sn = s, prove that limσn = s.
(b) Construct a sequence {sn} which does not converge, although limσn = 0.
(c) Can it happen that sn > 0 for all n and that lim sup sn = ∞, although

limσn = 0?
(d) Put an = sn − sn−1, for n ≥ 1. Show that

sn − σn =
1

n+ 1

n∑
k=1

kak.

Assume that lim(nan) = 0 and that {σn} converges. Prove that {sn} con-
verges.
[This gives a converse of (a), but under the additional assumption that nan →
0.]

(e) Derive the last conclusion from a weaker hypothesis: Assume M < ∞, |nan| ≤
M for all n, and limσn = σ. Prove that lim sn = σ, by completing the
following outline:
If m < n, then

sn − σn =
m+ 1

n−m
(σn − σm) +

1

n−m

n∑
i=m+1

(sn − si).

For these i,

|sn − si| ≤
(n− i)M

i+ 1
≤ (n−m− 1)M

m+ 2
.

Fix ε > 0 and associate with each n the integer m that satisfies

m ≤ n− ε

1 + ε
< m+ 1.

Then, (m+ 1)/(n−m) ≤ 1/ε and |sn − si| < Mε. Hence

lim sup
n→∞

|sn − σ| ≤ Mε.

Since ε was arbitrary, lim sn = σ.

Proof.
(a) Let ε > 0 and pick M ∈ N, such that |sm − s| < ε/2 for all m ≥ M . Then

choose N ≥ M with
|si − s|

N
<

ε

2M
,
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for every 0 ≤ i ≤ M − 1. So, for n ≥ N ,

∣∣∣∣s0 + s1 + · · ·+ sn
n+ 1

− s

∣∣∣∣ < M−1∑
i=1

|si − s|
N

+
n∑

i=M

|si − s|
n+ 1

<

(
1− 1

M

)
· ε
2
+

(
1− M

n+ 1

)
· ε
2
< ε.

Hence, limσn = s.
(b) Consider the alternating sequence {(−1)n}, which is clearly divergent. Then,

|σn| ≤ 1
n+1 so limσn = 0.

(c) Yes, let

sn :=

k if n = k3 for some integer k,

(−1)n otherwise.

Pick any integer n and suppose k3 ≤ n < (k + 1)3. Then,

|σn| ≤
1 + (1 + 2 + · · ·+ k)

2k
<

k2 + k + 1

k3
=

1

k
+

1

k2
+

1

k3
.

Thus, limσn = 0. Simultaneously, as lim sk3 = ∞, we know lim sup sn = ∞.
(d) As expected, we notice

sn − σn =
1

n+ 1
[(n+ 1)sn − s0 − s1 − · · · − sn]

=
1

n+ 1

n∑
k=1

sn − sk−1

=
1

n+ 1

n∑
k=1

n∑
j=k

aj

=
1

n+ 1

n∑
k=1

kak.

From (a), we deduce lim 1
n+1

∑n
k=1 kak = lim(nan) = 0. So, lim sn = limσn;

the sequence sn converges.
(e) First notice that, if n > m, then

σn − σm =
m− n

m+ 1
· (s0 + s1 + · · ·+ sn)

n+ 1
+

sm+1 + sm+2 + · · ·+ sn
n+ 1

and
1

n−m

n∑
i=m+1

(sn − si) = sn − sm+1 + sm+2 + · · ·+ sn
n−m

.
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As such,

m+ 1

n−m
(σn − σm) +

1

n−m

n∑
i=m+1

(sn − si)

=− s0 + s1 + · · ·+ sn
n+ 1

+

(
m+ 1

n+ 1
− 1

)
· sm+1 + sm+2 + · · ·+ sn

n−m
+ sn

=− s0 + s1 + · · ·+ sn
n+ 1

− sm+1 + sm+2 + · · ·+ sn
n+ 1

+ sn

= sn − σn.

For these i,

|sn − si| ≤
1

i+ 1

n∑
k=i+1

(i+ 1)|ak| ≤
1

i+ 1

n∑
k=i+1

|kak| ≤
(n− i)M

i+ 1
.

The latter inequality hence follows. Now, fix ε > 0 and associate with each
n the integer m that satisfies

m ≤ n− ε

1 + ε
< m+ 1.

Then,

m+mε ≤ n− ε and n− ε < (M + 1) +M + 1,

m+ 1

n−m
≤ 1

ε
and ε >

n−m− 1

m+ 2
.

From the latter, we deduce |sn − si| < Mε. Now pick N ∈ N, such that

|σn − σ| < ε and |σn − σm| < ε2,

for all n ≥ m ≥ N . Consequently,

|sn − σ| ≤ |sn − σn|+ |σn − σ|

≤ |σn − σ|+ m+ 1

n−m
|σn − σm|+ 1

n−m

n∑
i=m+1

|sn − si|

< ε+
ε2

ε
+

(n−m)Mε

n−m
= (M + 2)ε.

So, lim sup|sn − σ| ≤ (M + 2)ε (and lim inf|sn − σ| ≥ 0 is self-explanatory).
Since ε was arbitrary, lim sn = σ.

Exercise 3.16. Fix a positive number α. Choose x1 >
√
α, and define x2, x3, x4, . . .,

by the recursion formula

xn+1 =
1

2

(
xn +

α

xn

)
.
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(a) Prove that {xn} decreases monotonically and that limxn =
√
α.

(b) Put εn = xn −√
α, and show that

εn+1 =
ε2n
2xn

<
ε2n
2
√
α

so that, setting β = 2
√
α,

εn+1 < β

(
ε1
β

)2n

(n = 1, 2, 3, . . . ).

(c) This is a good algorithm for computing square roots, since the recursion
formula is simple and the convergence is extremely rapid. For example, if
α = 3 and x1 = 2, show that ε1/β < 1

10 and that therefore

ε5 < 4 · 10−16, ε6 < 4 · 10−32.

Proof.
(a) As the discriminant (−2

√
α)2 − 4(1)(α) = 0, we know x2n + α ≥ 2

√
αxn. i.e.

xn+1 ≥ √
α. Hence, xn ≥ √

α for all n ∈ N, making xn+1 ≤ xn clear. Now
letting L := limxn, we see that L = 1

2

(
L+ α

L

)
. Thus L =

√
α follows.

(b) We see that

εn+1 = xn+1 −
√
α =

1

2

(
xn +

α

xn

)
−√

α =
x2n − 2

√
αxn + α

2xn
=

ε2n
2xn

.

The given inequality hence holds, since {xn} is bounded below by
√
α.

Accordingly,

ε2 <
ε21
β

= β

(
ε1
β

)2

.

Furthermore, presuming εk+1 < β(ε1/β)
2k , we notice

εk+2 <
ε2k+1

β
< β

(
ε1
β

)2k+1

.

(c) Fix α = 3 and x1 = 2. Then, since 81/25 > 3,

ε1
β

=

√
3

3
− 1

2
<

√
81/25

3
− 1

2
=

1

10
.

Moreover, because 4 > 3,

ε5 < 2
√
3

(
1

10

)24

< 4 · 10−16, ε6 < 2
√
3

(
1

10

)25

< 4 · 10−32.
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Exercise 3.20. Suppose {pn} is a Cauchy sequence in a metric space X, and some
subsequence {pni} converges to a point p ∈ X. Prove that the full sequence {pn}
converges to p.

Proof. Let ε > 0. Pick I ∈ N, such that

d(pn − pm) <
ε

2
and d(pnI − p) <

ε

2
,

for every n ≥ m ≥ nI . Then, the full sequence {pn} converges to p, since

d(pn − p) ≤ d(pn − pnI ) + d(pnI − p) <
ε

2
+

ε

2
= ε.

Exercise 3.22 (Baire’s theorem). Suppose X is a nonempty complete metric
space, and {Gn} is a sequence of dense open subsets of X. Prove Baire’s theorem,
namely, that

⋂
Gn is not empty. (In fact, it is dense in X.)

Proof. Pick a sequence of points {gn}, such that d(gn, gn−1) < 0.5n/n and gn ∈
Gn ∩⋂n−1

m=1Nrm(gm), where Nrm ⊆ Gm. Notice that, for n ≥ m ≥ N ,

d(gn, gm) ≤
m−1∑
i=n

d(gn, gn+1) ≤
∞∑
i=1

0.5i

N
=

1

N
.

i.e. {gn} is Cauchy. Hence, by Completeness it converges to some limit g. Further-
more, since gn, gn+1, . . . ∈ Nrn(gn), it follows that g ∈ Nrn(gn) for each n. Hence,
g ∈ ⋂Gn. See Figure 3.3 for an illustration. Now, let x ∈ X and ε > 0; pick
g1 ∈ G1 ∩ Nε/2(x). By choosing r1 ≤ ε/2, we have g ∈ Nε/2(g1). So, g ∈ Nε(x);
the intersection

⋂
Gn is dense in X.
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g1 g2

g3

g4g5

g6

g7

g8
g

Figure 3.3: An illustration of the above procedure to obtain g ∈ ⋂Gn.

Exercise 3.23. Suppose {pn} and {qn} are Cauchy sequences in a metric space X.
Show that the sequence {d(pn, qn)} converges.

Proof. Let ε > 0. We pick N ∈ N, such that

d(pn, pm) <
ε

2
and d(qn, qm) <

ε

2
,

for any n ≥ m ≥ N . Then, the reverse triangular inequality implies

|d(pn, qn)− d(pm, qm)| ≤ |d(pn, qn)− d(qn, pm)|+ |d(qn, pm)− d(pm, qm)|
≤ d(pn, pm) + d(qn, qm) <

ε

2
+

ε

2
= ε.

Hence, by the completeness of R, the Cauchy sequence {d(pn, qn)} converges.

Exercise 3.24. Let X be a metric space.
(a) Call two Cauchy sequences {pn}, {qn} equivalent if

lim
n→∞

d(pn, qn) = 0.
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Prove that this is an equivalence relation.
(b) Let X∗ be the set of all equivalence classes so obtained. If P ∈ X∗, Q ∈ X∗,

{pn} ∈ P , {qn} ∈ Q, define

∆(P,Q) = lim
n→∞

d(pn, qn);

by exercise 23, this limit exists. Show that the number ∆(P,Q) is unchanged
if {pn} and {qn} are replaced by equivalent sequences, and hence that ∆ is a
distance function in X∗.

(c) Prove that the resulting metric space X∗ is complete.
(d) For each p ∈ X, there is a Cauchy sequence all of whose terms are p; let Pp

be the element of X∗ which contains this sequence. Prove that

∆(Pp, Pq) = d(p, q)

for all p, q ∈ X. In other words, the mapping φ defined by φ(p) = Pp is an
isometry (i.e. a distance preserving mapping) of X into X∗.

(e) Prove that φ(X) is dense in X∗, and that φ(X) = X∗ if X is complete. By
(d), we may identify X and φ(X) and thus regard X as embedded in the
complete metric space X∗. We call X∗ the completion of X.

Proof.
(a) As illustrated below, all three conditions of being an equivalence relation are

satisfied.
Reflexivity: The zero sequence {d(pn, pn)} always converges to zero.
Symmetry: This is clear, since d is a metric.
Transitivity: Let {pn}, {qn}, and {rn} be Cauchy sequences, such that

lim d(pn, qn) = lim d(qn, rn) = 0.

By the triangle inequality and the Squeeze Theorem, it is clear that
lim d(pn, rn) = 0.

(b) Let ε > 0, {pn}, {bn} ∈ P , and {qn}, {dn} ∈ Q. We pick N ∈ N, such that

d(pn, bn) <
ε

2
and d(qn, dn) <

ε

2
,

for each n ≥ N . Then, lim d(pn, qn) = lim d(bn, dn), because

|d(pn, qn)− d(bn, dn)| ≤ |d(pn, qn)− d(qn, bn)|+ |d(qn, bn)− d(bn, dn)|
≤ d(pn, bn) + d(qn, dn) <

ε

2
+

ε

2
= ε.

i.e. ∆: X∗ ×X∗ → R+
0 is well-defined. In fact, since d is a metric, so is ∆.

(c) Let {Pr} be a Cauchy sequence in X∗. We shall construct a sequence {qk}
whose limit is limPr.
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For each r ∈ N, choose a
{
p
(r)
i

}
∈ Pr. Fix k ∈ N and pick the least Nk ∈ N,

such that ∆(Pn, Pm) < 1/k, for any n ≥ m ≥ Nk. Now pick Ik ∈ N, such
that d

(
p
(Nk)
i , p

(Nk)
j

)
< 1/k, for all i ≥ j ≥ Ik. Hence, define qk := p

(Nk)
Ik

. We
proceed to verify that {qk} is Cauchy.
Fix α ≥ β ≥ k. We notice ∆(PNα , PNβ

) < 1/k. So, pick Γ ≥ Iα, Iβ such

that, for γ ≥ Γ, we have d
(
p
(Nα)
γ , p

(Nβ)
γ

)
< 2/k. Then,

d(qα, qβ) ≤ d
(
p
(Nα)
Iα

, p(Nα)
γ

)
+ d

(
p(Nα)
γ , p

(Nβ)
γ

)
+ d

(
p
(Nβ)
γ , p

(Nβ)
Iβ

)
<

4

k
.

As such, {qk} is a Cauchy sequence in X and we let Q ∈ X∗ denote its
equivalence class. Finally, we show that Q = limPr.
Fix k ∈ N and r ≥ Nk. Pick Λ ≥ Nk, such that d

(
p
(Nµ)
Iµ

, p
(Nλ)
Iλ

)
< 1/k, for

λ ≥ µ ≥ Λ. By leastness, Nλ ≥ Nµ ≥ Nk. Therefore, d
(
p
(r)
λ , p

(Nµ)
δ

)
< 2/k

for some δ ≥ Iµ. As δ ≥ Iµ, we see that d
(
p
(Nµ)
δ , p

(Nµ)
Iµ

)
< 1/k. Thus,

d
(
p
(r)
λ , qλ

)
≤ d

(
p
(n)
λ , p

(Nµ)
δ

)
+ d

(
p
(Nµ)
δ , p

(Nµ)
Iµ

)
+ d

(
p
(Nµ)
Iµ

, p
(Nλ)
Iλ

)
<

4

k
.

In other words, ∆(Pr, Q) ≤ 4/k for r ≥ Nk. So, limPr = Q. See Figures 3.4
and 3.5 for an illustration.

(d) Since every Pp is a constant sequence whose terms are all p,

∆(Pp, Pq) := lim
n→∞

d(p, q) = d(p, q).

(e) Let {pn} ∈ P ∈ X∗ − φ(X) and ε > 0. Then, pick N ∈ N, such
that d(pn, pm) < ε/2 for all n ≥ m ≥ N . Accordingly, ∆(P, Ppm) =

limn→∞ d(pn, pm) < ε; the isomorphic embedding φ(X) is dense in X∗. For
the following proof, we shall reuse the notation defined in (c). Assume X is
complete and notice that {qk} converges to a limit q ∈ X. So, Q = Pq ∈ X∗.
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5 10 15

1

2

Figure 3.4: A Cauchy sequence, whose equivalence class is the limit of the Cauchy
sequence of equivalence classes of the red Cauchy sequences, in R− {0} (Desmos).

· · · · · ·
−1 0 1

Figure 3.5: The picture of Figure 3.4 in the completion (R− {0})∗ ∼= R.

Claim. Let X be a complete metric space and E ⊆ X. Then, E is complete iff E

is closed (relative to X).

Proof. Let x be a limit point of the complete metric space E. Now, pick a sequence
{pn} in E that converges to x. Since {pn} is a Cauchy sequence in E, we are certain
that its limit x ∈ E. Hence, E is closed in X.
Conversely, let {qn} be a Cauchy sequence in the closed set E. Then, by the
completeness of X, it converges to some x ∈ X. Since this is a limit point of E, it
is included in E. As such, E is complete.

Note. A metric space X is complete iff if it (more accurately, φ(X)) is closed
relative to X∗.

Claim. A metric space X is globally closed iff it is complete.

Proof. If X is globally closed, it is closed relative to its completion. Hence X would
be complete, by the preceding claim. Conversely, consider when X is complete
and X ⊆ Y . Let y be a limit point of X. So, we pick a sequence {xn} in X that
converges to y. As {xn} is a Cauchy sequence in X, its limit y ∈ X. Therefore, X
is globally closed.

https://www.desmos.com/calculator/ckyrfzuy7v
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Claim. (Revised) If a metric space X is both globally closed/complete and bounded,
it is compact.

Proof. This is false. Consider the discrete metric on N, hence giving us a complete
metric space. Then, the open cover consisting of all neighbourhoods N1/2(n) has
no finite subcover.

Claim. A compact metric space X is globally closed/complete.

Proof.

Claim. A compact metric space X is bounded.

Claim. Let the metric space X be perfect, complete, and bounded. Then, X is
compact.



Chapter 4

Continuity

§4.1 Theorems

Figure 4.1: An illustration of topological continuity: f is continuous at , but is discon-
tinuous at and .

Theorem 4.7. Let X,Y, Z be metric spaces, E ⊆ X, f : E → Y and g : f [E] → Z.
If f is continuous at a point p ∈ E and g is continuous at the point f(p), then
h := g ◦ f is continuous at p.

Proof. Let ε > 0. By continuity, we can pick δ, η > 0, such that g[Nδ(f(p))] ⊆
Nε(h(p)) and f [Nη(p)] ⊆ Nδ(f(p)). Hence, h[Nη(p)] ⊆ Nε(h(p)).

Claim. Let f : X → Y and g : Y → Z. Then, if [find necessary conditions], then
limx→p(g ◦ f)(x) = limy→q g(y). (What about the converse?)

Theorem 4.8. Let X and Y be metric spaces. Then, any function f : X → Y is
continuous iff f−1[V ] is open for every open set V .

41
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Proof. Consider when f−1[V ] is open for every open set V . So, let ε > 0 and
x ∈ X. Since f−1[Nε(f(x))] is open, it contains Nδ(x) for some δ > 0. Thus,
f [Nδ(x)] ⊆ Nε(f(x)), i.e. f is continuous at x.
Now consider when Nr(x) ⊈ f−1[V ] for some open set V , point x ∈ f−1[V ], and
all r > 0. So, for each n ∈ N, pick zn ∈ N1/n(x) − f−1[V ]. Furthermore, as V is
open, Nε(f(x)) ⊆ V for some ε > 0. Now, dY (f(zn), f(x)) ≥ ε. Hence, f is not
continuous at x.

Proof. A direct proof for the ( =⇒ ) direction. Let f : X → Y be continuous, V
an open subset of Y , and x ∈ f−1[V ]. Thus, f [Nδ(x)] ⊆ Nε(f(x)) ⊆ V for some
δ > 0 and ε > 0. i.e. Nδ(x) ⊆ f−1[V ]. So, f−1[V ] is open.

Corollary (Baby Rudin page 87). A mapping f of a metric space X into a metric
space Y is continuous iff f−1[C] is closed in X for every closed set C in Y .

Theorem 4.14. Suppose f is a continuous mapping of a compact metric space X

into a metric space Y . Then f [X] is compact.

Proof. Let {Gα} be an open cover of f [X]. By theorem 4.8, there is a finite cover
{f−1[Gαn ]} of X. Now {Gαn} is a finite subcover of f [X], which must hence be
compact.

Observation. Any continuous function, from a compact metric space X into a met-
ric space Y , must be bounded.

Claim. Suppose f is a continuous mapping of a complete metric space X into a
metric space Y . Then f [X] is complete.

Claim. If f is a continuous mapping of a closed metric space X into a metric space
Y , then f [X] does not have to be closed.

Theorem 4.16 (The extreme value theorem). Suppose f is a continuous real function
on a compact metric space X, and

M := sup
p∈X

f(p), m := inf
p∈X

f(p).

Then there exists p, q ∈ X such that f(p) = M and f(q) = m.

Proof. This is a corollary of the preceding theorem.

Question. Does the extreme value theorem hold if X is just a complete metric
space?
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Theorem 4.17. Suppose f is a continuous bijection of a compact metric space X

into a metric space Y . Then the inverse mapping defined by

f−1(f(x)) := x

is a continuous bijection of Y into X.

Proof. Let C ⊆ X be closed and {cn} be a sequence in C, such that f(cn) → y ∈ E.
Since Y is compact, there is a convergent cnk

. Hence, f [C] is closed. The corollary
to theorem 4.8 implies the continuity of f−1.

Question. If X and Y are metric spaces, such that X is complete. Then, must
bounded and continuous functions f : X → Y be uniformly continuous?

Proof. No. A counterexamplea: consider the bounded and continuous func-
tion f : R → R defined by f(x) := sin(x2). Let δ > 0 and recall that
limx→∞

√
x = 1. So, pick n ∈ N such that

√
π/2 + 2nπ −

√
2nπ < δ. We

notice
∣∣∣f(√π/2 + 2nπ

)
− f

(√
2nπ

)∣∣∣ = 1, meaning f cannot be uniformly contin-
uous.

aFor a failed counterexample, see Figure 6.1.

An alternative.

Proof. Consider the bounded continuous function L : R+
0 → R defined by

L(x) := (−1)nn

(
x−

n∑
i=1

1/i

)
+

(−1)n + 1

2
,

for x ∈ [
∑n−1

i=1 1/i,
∑n

i=1 1/i]. See Figure 4.2 for an illustration.

Definition. Let cn,m := (0, 0, . . . , 0︸ ︷︷ ︸
n−1 times

, c, 0, 0, . . . , 0) ∈ Rm. We write cn for cn,n.

Claim. Let f be a continuous mapping of a complete bounded metric space X into
a metric space Y . Then f is uniformly continuous on X.

Proof. This is false. Let the metric d on X :=
⋃

n{cn | c = 1, 1+1/n} be defined by
d(cn, cm) := |cn,m − cm|, for m ≥ n. Clearly, (X, d) is bounded, as X ⊂ ⋃nN2(0n).
Moreover, X is a set of isolated points. Hence, it is complete and f : (X, d) → (R, |·|)
defined by f(cn) = ⌈c⌉ is continuous. But it is not uniformly continuous:

d(1n, (1 + 1/n)n) = 1/n and |f((1n)− f(1 + 1/n)n)| = 1

for all n. See Figure 4.3 for an illustration.
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2 4 6

0.5

1

Figure 4.2: An illustration of L, which is obtained by adjoining line segments nx of
horizontal width 1/n together (Desmos).

(a) n = 1

(b) n = 1, 2 (c) n = 1, 2, 3

Figure 4.3: An illustration of the set X, up to n = 3.

https://www.desmos.com/calculator/e4gjllfiyw
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I thought of using infinite coordinates, but I didn’t think of any nice metrics. The ℓp

sequence spaces are useful tools to have for such situations!

Remark (Courtesy of James and Outsider from Mathcord). An easier counterexample
can be found in ℓp spaces — the set of all sequences {xn} for which

∑ |xn|p < ∞.
For p ≥ 1, it is endowed with the metric p({xn}, {yn}) := (

∑ |xn − yn|p)1/p. For
0 < p < 1, it is endowed with the metric p({xn}, {yn}) :=

∑ |xn − yn|p.

Remark. As an aside, a uniformly continuous function f on metric spaces can be
unbounded. Consider the inclusion map ι : (N, d) → (N, |·|), where d represents the
discrete metric.

Claim. Let X and Y be metric spaces, such that every sequence in X has a con-
vergent subsequence. Then, every continuous function f : X → Y is uniformly
continuous.

Proof. Let ε > 0, sx := sup{δ > 0 | d(f(x), f(y)) < ε if d(x, y) < δ}, and i :=

inf{δx |x ∈ X}. Suppose, for contradiction, that f : X → Y is not uniformly
continuous. i.e. i = 0. Hence, pick a sequence {xn}, such that it converges to some
p ∈ X and sxn → 0. By continuity, there is δ > 0 such that d(f(x), f(p)) < ε/2, for
x ∈ Nδ(p). Choose N ∈ N, such that d(xn, p) < δ/2 for n ≥ N . Now sxn ≥ δ/2, a
contradiction. The claim is therefore true.

Question. If every sequence in X has a convergent subsequence, then must X be
compact?

Proof. Consider a cover {Nrx(x)} of X, where rx > 0. Pick xn /∈ ⋃n−1
i=1 Nrxi

(xi),
such that rxn ≥ sup

{
rx/2

∣∣ x /∈ ⋃n−1
i=1 Nrxi

(xi)
}
. Suppose, for contradiction,

that {xn} is infinite. Wlog, {xn} converges to some p ∈ X. Thus, since
d(xn, xn+1) > rxn , we have that rxn → 0. But then rxm < rp/2 for some m,
where p /∈ ⋃iNrxi

(xi). A contradiction.

Corollary. The following statements are equivalent, for a metric space X.
(a) X is compact.
(b) Every open cover of X contains a finite subcover.
(c) Every sequence in X has a convergent subsequence.
(d) Every infinite subset of X contains a limit point in X.

Note. (d) does not imply that X contains only a finite number of isolated points.
For instance, consider X = {0} ∪ {1/n |n ∈ N}.

Theorem 4.19. Let f be a continuous mapping of a compact metric space X into
a metric space Y . Then f is uniformly continuous on X.
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Proof. This follows from the preceding claim. Alternatively, let ε > 0 and, for
each x ∈ X, pick δx > 0 such that f [Nδx(x)] ⊆ Nε/2(f(x)). By compactness, there
is a finite subcover

{
Nδxn/2

(xn)
}

of X. So, f
[
Nminn{δxn/2}(x)

]
⊆ Nε(f(x)) for

every x ∈ X. i.e. f is uniformly continuous on X.

Question. If all continuous mappings f , from a metric space X into a metric space
Y , are uniformly continuous, must X then be compact? What if the space Y is
compact and infinite?

Proof. No to both. Let d denote the discrete metric. Consider the non-compact
space (R, d), and the compact space (R, |·|). Since f [N1(x)] = {f(x)} for all x ∈ R,
every function f : (R, d) → (R, |·|) is uniformly continuous.

Theorem 4.22. If f is a continuous mapping of a metric space X into a metric
space Y , and if E is a connected subset of X, then f [E] is connected.

Proof. Let f : X → Y be continuous; A and B be separated subsets of f [E]. For
x ∈ f−1[A], we have f(x) ∈ A by continuity. So, x /∈ f−1[B]. By symmetry, we
conclude that f−1[A] and f−1[B] are separated.

Theorem 4.23 (The intermediate value theorem). Let f be a continuous real function
on the interval [a, b]. If c is a number such that f(a) < c < f(b), then there exists
a point x ∈ (a, b) such that f(x) = c.

Proof. Suppose, for contradiction, that c /∈ f(a, b). By the preceding theorem,
since [f(a), c) and (c, f(b)] are separated sets, [a, b] is not connected. A contradic-
tion.

Definition. If X is a metric space and E ⊆ X, the interior IntX(E) (or simply
Int(E)) of E is the set of all interior points of E, relative to X.

Exercise (From Eric). A metric space E is disconnected (i.e. not connected) iff it is
the union of two nonempty disjoint open subsets of itself.

Proof. Let E be disconnected; E = A ∪ B for some nonempty separated sets A

and B. Notice that Int(A)∁ ∩ Int(B)∁ ⊆ B ∩ A = ∅. So, E is the union of its
disjoint open subsets Int(A) and Int(B). Conversely, let E = C ∪D for some open
nonempty disjoint subsets C and D. Suppose, for contradiction, that C ∪D ̸= ∅.
But now C ∩Nε(p) ̸= ∅, for some Nε(p) ⊆ D. A contradiction.

Theorem 4.30. Let f be monotonic on (a, b). Then, the set of points of (a, b) at
which f is discontinuous at is at most countable.
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§4.2 (Self) Limits at infinity for metric spaces?

Definition 4.31. Let X be a metric space with x, y ∈ X. Then, the set Lx,y of all
points z such that

d(x, z) = d(x, y) + d(y, z) or d(x, z) = d(y, z)− d(x, y)

is the line induced by x, y.

Definition 4.32. Let f be a function from a metric space X into the metric space
Y , and a, b ∈ X. A point y ∈ Y is the limit of f at ∞a,b iff for each ε > 0 there
is M ≥ 0, such that d(f(x), p) < ε whenever d(a, x) = d(a, b) + d(b, x) ≥ M . A
point y ∈ Y is the limit of f at −∞a,b iff for each ε > 0 there is M ≥ 0, such that
d(f(x), p) < ε whenever d(a, x) = d(b, x)− d(a, b) ≥ M .

Is this definition consistent with the typical definition of infinite limits in R? Does this
definition obey limit laws?

§4.3 Hw 7

Exercise 4.1. Suppose f is a real function defined on R which satisfies

lim
h→0

[f(x+ h)− f(x− h)] = 0

for every x ∈ R. Does this imply that f is continuous?

Proof. No. Consider the function f : R → R defined by

f(x) =

1 if x = 0,

0 otherwise.

Even though
lim
h→0

[f(h)− f(−h)] = lim
h→0

[1− 1] = 0,

we notice that limx→0 f(x) = 1 ̸= 0 = f(0).

Exercise 4.2. If f is a continuous mapping of a metric space X into a metric space
Y , prove that

f [E] ⊆ f [E]

for every set E ⊆ X. (E denotes the closure of E.) Show, by an example, that
f [E] can be a proper subset of f [E].
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Proof. Let f be a continuous mapping of a metric space X into a metric space
X. Pick any limit point x of E and sequence {pn} in E that converges to x. By
continuity, f(x) = limn→∞ f(pn) ∈ f [E]. Hence, f [E] ⊆ f [E] is clear.
An example for when f [E] ̸= f [E]. Let d denote the discrete metric. Consider the
continuous function f : ([0, 1], d) → (R, |·|), defined by f(x) := x for x ∈ (0, 1) and
f(0) := f(1) := 1. So, f(0, 1) = f [0, 1] = (0, 1], but f(0, 1) = (0, 1) = [0, 1].

Question. Is it possible for
∣∣∣f [E]− f [E]

∣∣∣ = |R|?

Proof. Yes! For the inclusion map ι : Q → R, we see that ι[Q] = Q but ι[Q] =

R.

Exercise 4.4. Let f and g be continuous mappings of a metric space X into a metric
space Y , and let E be a dense subset of X. Prove that f [E] is dense in f [X]. If
g(p) = f(p) for all p ∈ E, prove that g(p) = f(p) for all p ∈ X. (In other words, a
continuous mapping is determined by its values on a dense subset of its domain.)

Proof. Let p be a limit point of E and select a sequence {qn} in E, that converges
to p. Then, since g(qn) = f(qn) for all n,

g(p) = lim
n→∞

g(qn) = lim
n→∞

f(qn) = f(p)

by continuity.

p

Figure 4.4: An illustration of g in the case that E = 0 ∪ {1/n |n ∈ N} and f(x) :=

limz→x−
sin(x)

x (Desmos).

Exercise 4.5. If f is a real continuous function on a closed set E ⊆ R, prove that
there exist continuous real functions g on R, such that g(x) = f(x) for all x ∈ E.
(Such functions g are called continuous extensions of f from E to R.) Show that
the result become false if the word “closed” is omitted. Extend the result to vector

https://www.desmos.com/calculator/re9repqawf
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valued functions.

Proof. Let f : E → R be a continuous function, where E is a closed subset of R, and
pick x ∈ R. Hence, define lx := max{p ∈ E | p ≤ x} and ux := min{p ∈ E | p ≥ x}.
Now we have the function g : R → R given by

g(x) :=



f(x) if x ∈ E,[
f(ux)− f(lx)

ux − lx

]
(x− lx) + f(lx) if x ∈ (minE,maxE)− E,

f(minE) if x ≤ minE,

f(maxE) if x ≥ maxE.

See Figure 4.4 for an illustration. Since line segments are continuous, so is g.
(For limit points p ∈ E, fix ε > 0 and let [a ± b]S := [a − b, a + b] ∩ S. By
continuity, f [p± δ]E ⊆ [f(p)± ε]R for some δ > 0. Wlog, p± δ ∈ E. Furthermore,
min{f(lx), f(ux)} ≤ g(x) ≤ max{f(lx), f(ux)}. That is, g[p± δ]R = f [p± δ]E .)

The word “closed” is indeed essential. Let f : (0, 1) → R be defined by f(x) = 1/x.
Then, as limx→0+ f(x) does not exist, it has no continuous extension.

Now for vector-valued functions f : E → Rn, we have .

Question. Let X and Y be metric spaces, and E a closed subset of X. Does every
continuous function f : E → Y have a continuous extension to X?

Proof. No. Consider the function f : [0, 1] − Q → R given by f(x) := 1
x . Let

x ∈ [0, 1]−Q and ε > 0. Then, for δ := x− x
1+εx , we have Nδ(x) ⊆

[
x

1+εx ,
x

1−εx

]
.

Hence, f [Nδ(x)] ⊆ Nε(f(x)). As such, f is continuous. But since f is unbounded,
it has no continuous extensions to R−Q.

Question. Let X and Y be metric spaces, and E be a complete subset of X. Do
all continuous functions f : E → Y have a continuous extension to X?

Proof. No. A counterexample: the inclusion map ι : ({0, 1}, |·|) → (R, d), where d

represents the discrete metric, has no continuous extension to (R, |·|).

Question. Let X and Y be metric spaces, and E be an complete subset of X that
contains at least one limit point p. Do all continuous functions f : E → Y have a
continuous extension to X?

Proof. No. Let S = {0}∪{1/n |n ∈ N}. We see that any extension of the inclusion
map ι : (S, |·|) → (S, |·|) to (R, |·|) always has a jump discontinuities. For instance,
at sup{1/2 ≤ x < 1 | f(x) = 1/2}.
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Question. Let X and Y be metric spaces, and E a compact subset of X. Do all
continuous functions f : E → Y have a continuous extension to X?

Proof. No. The same counterexample applies, as in the preceding question.

Observation. Even if E is a perfect compact subset of X, not all continuous func-
tions f : E → Y must have a continuous extension to X.

Proof. Consider the Euclidean metric and the map f : [0, 1]∪ [2, 3] → {1, 3} given
by

f(x) =

1 if x ∈ [0, 1],

3 if x ∈ [2, 3].

Any extension of f to R must clearly be discontinuous at sup{1 ≤ x < 3 | f(x) =
1}.

Question. Let X and Y be metric spaces, and let E be a perfect compact subset
of X. Then, if f : E → Y is continuous and maps limit points of E to limit points
of Y , must it have a continuous extension to X?

Proof. No. See the observation below.

Observation. It is not necessary for every function from a subset E of a metric
space X to a metric space Y to have a continuous extension to X, even when E

and Y are both perfect and compact.

Proof. Consider the Euclidean metric and the identity map id on [−2,−1]∪ [1, 2].
Similarly, every extension of id to R is discontinuous at sup{x ∈ [−1, 1] | id(x) =
−1}.

We notice that the source of the above counterexamples is, very informally, a hole in our
codomain that completeness does not rectify. See Figure 4.5 for an illustration.

Figure 4.5: When ⊆ X − E and ̸⊆ Y , there may be no continuous extension of f
to X.
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Exercise 4.7. If E ⊆ X and if f is a function defined on X, the restriction of f
to E is the function g whose domain of definition is E, such that g(p) = f(p) for
p ∈ E. Define f and g on R2 by: f(0, 0) := g(0, 0) := 0, f(x, y) := xy2/(x2 + y4),
g(x, y) := xy2/(x2 + y6) if (x, y) ̸= (0, 0). Prove that f is bounded on R2, that
g is unbounded in every neighbourhood of (0, 0), and that f is not continuous at
(0, 0); nevertheless, the restrictions of both f and g to every straight line in R2 are
continuous!

Proof. Suppose, for contradiction, that f is unbounded on R2. Then, for some
sequence {(xn, yn)}, ∣∣∣∣ 1

f(xn, yn)

∣∣∣∣ = |xn|
y2n

+
y2n
|xn|

→ 0.

Hence |xn|
y2n

, y2n
|xn| → 0. But taking their product, we have 1 → 0, a contradiction.

Moreover, since f(1/n2, 1/n) = 1/2 ̸→ 0, the function f is not continuous at (0, 0).
For g, it is unbounded in every neighbourhood of (0, 0) because g(1/n3, 1/n) =

n/2 → ∞. See Figure 4.6 for an illustration.
By limit laws, it is clear that f and g are be continuous on all (x, y) ̸= (0, 0). So,
fix nonzero a, b ∈ R and consider the line ℓ defined by rλ = λ(a, b), for λ ∈ R.
Since

f(rλ) =
λab2

a2 + λ4b4
and g(rλ) =

λab2

a2 + λ4b6

are continuous with respect to λ, the continuity of f |ℓ and g|ℓ at (0, 0) is certain.

§4.4 Hw 8

Question. Let E and Y be metric spaces, such that for all δ > 0 there is a fi-
nite cover {Nδ(pn)} of E. Then, if f : E → Y is uniformly continuous, must
{d(f(x), y)}x∈X be bounded for each y ∈ Y ?

Proof. Yes. Pick δ > 0, such that f [Nδ(x)] = N1(f(x)) for all x ∈ E. Now choose
a finite cover {Nδ(pn)}1≤n≤N of E. We see that {d(f(x), y)}x∈X is bounded by

1 +

N−1∑
n=1

d(f(xn), f(xn+1)) + d(f(xN ), y).

Question. Let f be a uniformly continuous mapping of a subset E of a compact
metric space X into a metric space Y . Then, must f be bounded?

Proof. Yes. Fix δ > 0. By compactness, there is a finite cover {Nδ/2(xn)} of E.
So, pick pn ∈ Nδ/2(xn). Then, {Nδ(pn)} covers E. The preceding question implies
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(a) f(x, y)

(b) g(x, y)

Figure 4.6: An illustration of f and g in Sage.

https://sagecell.sagemath.org/?z=eJzFz0tugzAQBuA9EnfwDrtMKI-yqcQdusiuKpFrHMUSxsg4BN--A2mSpptWVZRasjW_H6PPQpOKCNMaq3k_JJar7t0cwmACjwcjtzTCMmJh0MgtERQDeyZWur3tCJ0efJ2zRzrVeezrpzhN0svIGOYyDF6wUc8t19JZJTZ9a1zRUOxEPPzYgkEYELwFq_kgg2Vl-M5_35n7bnqjOjdUr2WaAs43ILzhvVOjrNZ2L2H5aUUFCM3YLWmL4wvsnP-VNSsuqFP6Gym-kalERXk2ndKVqUBTcT9TDvmn51hdWTK0ZL-wJMPOHOix4qOk0Va1skNasnO6jdgHgkPv2A==&lang=sage&interacts=eJyLjgUAARUAuQ==
https://sagecell.sagemath.org/?z=eJzFj9FqgzAUhu8F3yF35swzpw53UfAderG7MUsWUxowJsTUmrffcV1XdjUohQUS_o-T_HyRhrVM2sF6I9xUeKHHD3tKkwUjDWbheUYxgzTp1Z5JTgAb5lU4-pHx5SF2NTzxpavz2L3kZVFeVwXETZpsqcgJL4wKXsudG2x47jk1sYh_VgCmCaNb-EiDCtcD6FX8zWvnzlk9hql9q8oSab8jE71wQc-qffVHhV-_bLlEaQDuqLVaXKUudJtSfienhiyaH6cL_adTjfW3zznd5FJMB3vi5yRmxbO9HtRIasUhmCGDT4Z_xjU=&lang=sage&interacts=eJyLjgUAARUAuQ==
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f is bounded.

Observation. The compactness of a metric space X is strictly stronger than the
criteria that it must have a finite cover {Nδ(xn)}, for all δ > 0. For instance,
consider (0, 1).

Exercise 4.8. Let f be a real uniformly continuous function on the bounded set E

in R. Prove that f is bounded on E.
Show that the conclusion is false if boundedness of E is omitted from the hypothesis.

Proof. The result follows from the preceding question. The conclusion need not be
true when E is unbounded: The identity function on R provides an example.

Exercise. Let X and Y be metric spaces, such that Y is complete. Prove that
f : E → Y has a uniformly continuous extension from X to X∗.

Proof. Let p be a limit point of X∗ and pick ε > 0. So, there is a sequence
xn → p, and δ > 0 for which f [Nδ(x)] ⊆ Nε(f(x)) is true of all x ∈ X. Pick
N ∈ N, such that d(xn, p) < δ/2 for n ≥ N . Then, d(xm, xn) < δ for m,n ≥ N .
As such, d(f(xm), f(xn)) < ε. Moreover, the limit limx→p f(x) exists, since f [X ∩
Nδ/2(p)] ⊆ N2ε(lim f(xn)). Hence, we have the uniformly continuous extension
g : X∗ → Y defined by g(p) := limx→p f(x).

Exercise 4.13. Let E be a dense subset of a metric space X, and let f be a uniformly
continuous real function defined on E. Prove that f has a continuous extension
from E to X (see exercise 5 for terminology). (Uniqueness follows from exercise 4.)
Could the range space R be replaced by Rk? By any compact metric space?

Proof. Yes to all three. As the preceding self-exercise shows, this can even be
extended to any complete metric space Y .

Corollary (Lecture 8). If f : D → R is uniformly continuous, where D ⊆ R, then
there is a unique continuous function f̃ : D → R, where f̃(x) = f(x) for all x ∈ D.

Exercise 4.14. Let I = [0, 1] be the closed unit interval. Suppose f is a continuous
mapping of I into I. Prove that f(x) = x for at least one x ∈ I.

Proof. Wlog, f(0) > 0. Let i := inf{x | if y ≥ x, then f(y) ≤ y}. Clearly, f(i) −
i = limx→i+ f(x)−x ≤ 0. Now, pick xn ∈ [i−1/n, i) such that f(xn) > xn. Then,
f(i)− i = limn→∞ f(xn)− xn ≥ 0. Hence, f(i) = i.

Exercise 4.15. Call a mapping of X into Y open iff f [V ] is open in Y whenever V

is open in X. Prove that every continuous open mapping f : R → R is monotonic.
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Proof. Suppose, for contradiction, that there exists a < b < c, such that f(b) >

f(a), f(c). Then, let f(M) := max f |[a,c] and δ := min{M − a, c − M}. We see
that f [Nδ(M)] is not open, as f(M) is non-interior. A contradiction.

Exercise 4.18. Every rational x can be written in the form x = m/n, where n > 0,
and m and n are integers without any common divisors. When x = 0, we take
n = 1. Consider the function f defined on R by

f(x) =

0 if x is irrational,

1/n if x = m/n.

Prove that f is continuous at every irrational point, and that f has a simple (jump
or removable) discontinuity at every rational point.

Proof. Let {mk/nk} be a sequence converging to x ∈ R, that excludes x. Fix
N ∈ N and δ := min{|m/n− x| : 1 ≤ n ≤ N, m ∈ Z, m/n ̸= x}. Then, for some
K ∈ N, if k ≥ K, then |mk/nk − x| < δ. i.e. nk > N . So, limn→∞ f(mk/nk) = 0.
Hence, at every irrational point, f is continuous. But, for all 0 < |p/q −m/n| <
1/n, we see that |f(p/q)−f(m/n)| ≥ 1/(n2+n). Therefore, at each rational point
is a removable discontinuity.

§4.5 Other exercises

Exercise 4.19. Suppose f : R → R has the intermediate value property: If f(a) <
c < f(b), then f(x) = c for some x ∈ (a, b)∪ (b, a). Suppose also, for every rational
r, that the set of all x with f(x) = r is closed. Prove that f is continuous.

Proof. Assume, for contradiction, that L := lim f(xn) < f(x) for some x ∈ R and
sequence xn → x−. Pick M > [f(x)−L]−1 and xkn , such that |f(xkn)−L| < 1

Mn .
Now choose a rational r ∈ (L + 1/M, f(x)) and a sequence sn ∈ (xkn , x) with
f(sn) → r. But f(x) ̸= r even though sn → x, a contradiction.

Exercise 4.20. If E is a nonempty subset of a metric space X, define the distance
from x ∈ X to E by

ρE(x) = inf
x∈E

d(x, z).

(a) Prove that ρE(x) = 0 iff x ∈ E.
(b) Prove that ρE is uniformly continuous, by showing that

ρE(x)− ρE(y) ≤ d(x, y)

for all x, y ∈ X.
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Exercise 4.21. Suppose K and F are disjoint sets in a metric space X, and K is
compact, and F is closed. Prove that there exists δ > 0 such that d(p, q) > δ, if
p ∈ K and q ∈ F .

Exercise 4.22. Let A and B be disjoint nonempty closed sets in a metric space X,
and define

f(p) =
ρA(p)

ρA(p) + ρB(p)

for p ∈ X. Show that f is a continuous function whose range lies in [0, 1], that
f(p) = 0 precisely on A and f(p) = 1 precisely on B. This establishes a converse of
exercise 3: Every closed set A ⊆ X is Z(f) for some continuous f : X → R. Setting

V = f−1[0, 1/2] and W = f−1(1/2, 1],

show that V and W are open and disjoint, and that A ⊆ V with B ⊆ W . (Thus
pairs of disjoint closed sets in a metric space can be covered by pairs of disjoint
open sets. This property of metric spaces is called normality.)

Exercise 4.23. A real-valued function f : (a, b) → R is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

whenever a < x < b and a < y < b and 0 < λ < 1.
(a) Prove that every convex function is continuous.
(b) Prove that every increasing convex function of a convex function is convex,

(For example, if f is convex, so is ef .)
(c) If f is convex and if a < s < t < u < b, show that

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t
.

Proof.
(a) Let ε > 0 and fix α < x < β. Choose δ > 0 such that

x− t

β − t
f(β) < ε and

x− t

x− α
[f(α)− f(x)] < ε,

for t ∈ (x− δ, x). Since x = x−α
β−α · β + β−x

β−α · α, two inequalities follow:

f(x)− f(t) < f(x)− β − x

β − t
f(t) ≤ x− t

β − t
f(β)

f(t)− f(x) ≤ x− t

x− α
[f(α)− f(x)]

So, |f(x)− f(t)| < ε.
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(c) From the same decomposition of x, notice that

f(x)− f(α)

x− α
≤ f(β)− f(α)

β − α
≤ f(x)− f(β)

x− β
.

by subtracting −f(α) and −f(β), respectively, from

f(x) ≤ x− α

β − α
f(β) +

β − x

β − α
f(α).

(b) Let f : X → Y and g : Y → R be convex, where X,Y ⊆ R. Then, if g is
increasing,

gf(λx+ (1− λ)y) ≤ g(λf(x) + (1− λ)f(y)) ≤ λgf(x) + (1− λ)gf(y)

for each x, y ∈ X and 0 < λ < 1.

Question. Are there two convex functions which, when composed, is no longer
convex?

Exercise 4.24. Assume that f is a continuous real function defined in (a, b) such
that

f

(
x+ y

2

)
≤ f(x) + f(y)

2

for all x, y ∈ (a, b). Prove that f is convex.

Proof. × Fix x, y ∈ (a, b) and λ ∈ (0, 1). Let t1 :=
x+y
2 and

tn+1 :=

x+tn
2 if λx+ (1− λ)y < tn,

tn+y
2 if λx+ (1− λ)y > tn.

Clearly, tn = λnx+ (1− λn)y for some λn ∈ (0, 1). Since tn → λx+ (1− λ)y,a we
must have λn → λ. Hence,

f(tn) ≤ λnf(x) + (1− λn)f(y)

implies that f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), by continuity.
× Oops this sequence might not converge to t, actually.

ato be proven

Remark. Let x < t < y and define t1 :=
x+y
2 with

tn+1 =

x+tn
2 if t < tn,

tn+y
2 if t > tn.
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We have that tn = 2−n(anx+ bny), for some positive integers an and bn that sum
to 2n.

Proof. Assume that this is true for n. Then,

tn+1 :=


(an+2n)x+bny

2n+1 if t < tn,

anx+(bn+2n)y
2n+1 if t > tn.

Since an + 2n + bn = 2n+1, the result holds for n+ 1.

Proof (4.24). Fix x, y ∈ (a, b) and λ ∈ (0, 1) and t := λx+ (1− λ)y. Let

tn+1 :=
tin + tjn

2
,

where tin := max{x} ∪ {tm ≤ t |m ≤ n} and tjn = min{tm ≥ t |m ≤ n} ∪ {y}.
Since tn ∈ {tin , tjn}, strong induction implies that, for each n, there exists a
positive integer an such that

tn = 2−n[anx+ (2n − an)y] and f(tn) ≤ 2−n[anf(x) + (2n − an)f(y)].

Moreover, tjn−tin = 2−n(y−x) entails that tn → t. So, 2−nan → λ. By continuity,

f(λx+ (1− λy)) ≤ λf(x) + (1− λ)f(y).

Exercise 4.25. If A ⊆ Rk and B ⊆ Rk, define A+B to be the set of all sums x+y

with x ∈ A and y ∈ B.
(a) If K is compact and C is closed in Rk, prove that K + C is closed.
(b) Let α be an irrational real number. Let C1 be the set of all integers, let C2

be the set of all nα with n ∈ C1. Show that C1 and C2 are closed subsets of
R whose sum C1 + C2 is not closed, by showing that C1 + C2 is a countable
dense subset of R.

Proof.
(a) Let X be a normed vector space; K ⊆ X be compact and C ⊆ be closed.

Let kn + cn → x ∈ X be a sequence in K + C. As K is compact, there
is a subsequence kmn → k ∈ K. Since C is closed, cmn → m − k ∈ C so
x ∈ K + C.

(b) Let C1 = Z and C2 = αZ.
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Exercise 4.26. Suppose X,Y, Z are metric spaces, and Y is compact. Let f : X →
Y , let g : Y → Z be continuous and injective, and put h := g ◦ f .

(a) Prove that f is uniformly continuous, if h is uniformly continuous.
(b) Prove also that f is continuous, if h is continuous.
(c) Show (by modifying example 4.21 or finding a different example) that the

compactness of Y cannot be omitted from the hypotheses, even when X and
Z are compact.

Proof.
(a) Since Y is compact, so is g[Y ]. Hence, g−1 is uniformly continuous. Clearly,

the composition of two uniformly continuous maps must be uniformly con-
tinuous. i.e. f = g−1 ◦ h is uniformly continuous.

(b) Since the composition of two continuous maps is continuous, f must be
continuous.

(c) Consider the bijective continuous function g : [0, 2π) → [−1, 1] from example
4.21, defined by g(t) := (cos(t), sin(t)). And let f : [0, 2π] → [0, 2π) satisfy

f(t) :=

t if t ∈ [0, 2π),

0 if t = 2π
.

Even though f is discontinuous, h(t) = (cos(t), sin(t)) is uniformly continu-
ous.

Observation 4.33. Let X,Y, Z be metric spaces; f : X → Y and g : Y → Z.
(a) When f is uniformly continuous and g is continuous, g◦f does not have to be

uniformly continuous. (E.g. put f(x) := x2 for X = (0, 1) and g(x) := x−1/2.)
(b) When g is uniformly continuous and f is continuous, g ◦ f does not have to

be uniformly continuous. (The same example applies.)
(c) If f and g are both uniformly continuous, then g ◦ f is clearly continuous.

Theorem 4.34 (Outsider). Let f be a continuous, injective, and bounded map of a
subset X of R into another metric space Y . Then, f is uniformly continuous.



Chapter 5

Differentiation

§5.1 (Self) The gradient of functions

Let’s try to extend the definition of the derivative slightly, for fun!

Definition. Let f : X → R, where X is a metric space. Then, we say that f is
differentiable at a limit point p of X, with derivative f ′(p), iff the limit

f ′(p) := lim
x→p

f(x)− f(p)

d(x, p)

exists.

Typically, the idea of a derivative invokes the notion of a best linear approximation. But,
in metric spaces, we lack a notion of linearity to speak of. So, this is closer to being
the gradient of a function than a derivative. Anyways, we now see if the usual theorems
hold.

Theorem 5.2 (the continuity of derivatives). If f : X → R is differentiable at a point
p ∈ X, then f is continuous at p.

Proof. Let ε > 0. Pick 0 < δ < ε(f ′(p) + ε)−1, such that

|f(x)− f(p)− d(x, p)f ′(p)| < εd(x, p)

for all d(x, p) < δ. Now,

|f(x)− f(p)| ≤ |f(x)− f(p)− d(x, p)f ′(p)|+ d(x, p)f ′(p)

< (f ′(p) + ε)d(x, p) < ε.

So, f is continuous at p.

59
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Theorem 5.3 (sums, products and quotients). Suppose f, g : X → R are differen-
tiable at a point p ∈ X. Then, f + g, fg, and f/g are all differentiable at p

(assuming g(p) ̸= 0 in the final case). In fact,
(a) (f + g)′(p) = f ′(p) + g′(p),
(b) (fg)′(p) = f ′(p)g(p) + f(p)g′(p),

(c) (f/g)′(p) =
g(p)f ′(p)− g′(p)f(p)

g(p)2
.

Theorem 5.5 (chain rule). Suppose f : X → R and g : R → R are both differentiable
at p ∈ X. Then, (f ◦ g)′(p) = f ′(g(p))g′(p).

Claim. There exists two functions f : X → R and g : R → R, with a point p ∈ X,
such that (f ◦ g)′(p) exists, but neither f nor g is continuous at p.

Theorem. If f : X → R is differentiable at p ∈ X and has a local extremum at p,
then f ′(p) = 0.

§5.2 (Self) Investigating derivatives in normed spaces

Definition 5.6 (Schröder 17.24). Let X and Y be normed spaces, Ω ⊆ X be open,
f : Ω → Y , and x ∈ Ω. Then, f is called differentiable at x iff there is a continuous
linear function L : X → Y so that for all ε > 0 there is a δ > 0 such that for all
t ∈ X with ∥x− t∥ < δ we have

∥f(x)− f(t)− L(x− t)∥ ≤ ε∥x− t∥.

We set Df(x) := L and call it the Fréchet derivative of f at x.

I have seen the above definition instead have that L is bounded.

Definition 5.7. Let X and Y be normed spaces. A linear transformation T : X → Y

is bounded iff there exists c > 0 such that ∥T (x)∥ ≤ c∥x∥, for all x ∈ X.

Naturally, we ask the following:

Question 5.8. Let X and Y be normed spaces. Is a linear transformation T : X →
Y continuous iff it is bounded?

Proof. Conversely, limt→x∥T (x− t)∥ ≤ c limt→x∥x− t∥ = 0.

On the topic of bounded functions, I have come across the follow fact. So, let’s try to
prove it!

Observation 5.9. For finite dimensional normed spaces X and Y , every linear op-
erator T : X → Y is continuous.

https://onlinelibrary.wiley.com/doi/book/10.1002/9780470226773
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§5.3 (Self) A squeeze theorem for derivatives?

The following is a function I found long ago, which turned out to be a classic example!

0-0.2 -0.1 0.1 0.2

-0.01

-0.005

0.005

0.01

(a) f(0) := 0, f(x) := x2 sin(1/x)

0-0.1 0.1 0.2

-1

-0.5

0.5

1

(b) f ′(0) = 0, f ′(x) = 2x sin(1/x)− cos(1/x)

Figure 5.1: A function that has discontinuous derivative (Desmos).

0-0.02 -0.01 0.01 0.02

-0.01

0.01

Figure 5.2: The same function but x2 is replaced with x, i.e. g(0) := 0 and g(x) :=
x sin(1/x) (Desmos).

We see that f(x) is bounded by ±x2, while g(x) is bounded by ±x. The former is
differentiable at zero, while the latter is not. Perhaps ±x2 having the same derivative
at zero is the key to the differentiability of f at zero. Hence, we naturally question
whether such boundedness can, in general, give us more information on the derivative
and differentiability of a function, at a point.

https://www.desmos.com/calculator/5z9h2s1a9g
https://www.desmos.com/calculator/3wl9khh0es
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0-0.2 -0.1 0.1 0.2

-0.1

0.1

Figure 5.3: In fact, we can make the derivative at zero take on any value, such as with
h(0) := 0 and h(x) := x2 sin(1/x) + cx (Desmos).

Definition 5.10. Let f, g, h : R → R. We say that f is bounded by a pair of functions
g and h iff min{g, h} ≤ f ≤ max{g, h}.

Question 5.11. Let f, ↓, ↑ : R → R be differentiable at zero — where f(0) = ↓(0) =
↑(0) = 0 — such that ↓ is monotonically decreasing and ↑ is monotonically increas-
ing. If f is bounded by ↓ and ↑ in some Nδ(0), then must ↓′(0) ≤ f ′(0) ≤ ↑′(0)?

Proof. Yes, since
↓(t)
t

≤ f(t)

t
≤ ↑(t)

t

for any t ∈ Nδ(0).

Question 5.12. Let ↓, ↑ : R → R be differentiable at zero, such that ↓(0) = ↑(0) and
c := ↓′(0) = ↑′(0); ↓ is monotonically decreasing and ↑ is monotonically increasing.
If f : R → R is bounded by ↓ and ↑ in some Nδ(0), and f(0) = 0, then must f be
differentiable at zero? (More specifically, must f ′(0) = c?)

Proof. Yes, by the Squeeze theorem.

Claim 5.13. Let X ⊆ R and f : X → R. If f is differentiable at some x ∈ X, then
f is differentiable in some neighbourhood of x

Proof. This is false. Consider the function f below. The preceding result (5.12)
implies that f (bounded by ±x2) is differentiable at zero. Yet, it is not differen-
tiable at any 1/n.

https://www.desmos.com/calculator/8tholimjwd
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0-0.05 0.05

-0.001

-0.0005

0.0005

0.001

Figure 5.4: The red points and the blue circles filled by white illustrate
the jump discontinuities of this function. Everywhere else on the (blue) curve is
differentiable. (Desmos)

Claim 5.14. Let X ⊆ R and f : X → R be continuous. If f is differentiable at some
x ∈ X, then f is differentiable in some neighbourhood of x.

Proof. This is false. Consider the continuous function f below. The preceding
result (5.12) implies that f (bounded by ±x2) is differentiable at zero. But, again,
f is not differentiable at any 1/n.

p

Figure 5.5: This function is differentiable at all points except the ones in red .
(Desmos)

https://www.desmos.com/calculator/ocq8t6m67q
https://www.desmos.com/calculator/tixnqcvyfa
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Claim 5.15. Let X ⊆ R and f : X → R be uniformly continuous. If f is differen-
tiable at some x ∈ X, then f is differentiable in some neighbourhood of x.

Proof. This is false. Consider the uniformly continuous function f below. The
preceding result (5.12) implies that f (bounded by ±e−1/x) is differentiable at
zero. But, again, f is not differentiable at any 1/n.

p

Figure 5.6: This function is differentiable at all points except the ones in red .
(Desmos)

Remark 5.16. Let F ⊆ X ⊆ R and f : X → R. If f is continuous and f |X−F is
uniformly continuous, where F is finite, then f is uniformly continuous — simply
choose the smallest δ.
Let {Ei} be a partition of X. Similarly, if f is continuous and each f |Ei

is uniformly
continuous, then f is uniformly continuous.

§5.4 (Self) Continuity of the derivative

Observation 5.17. (Figure 5.3) For a differentiable function f : X → R (where
x ∈ X ⊆ R), the condition that limt→x f

′(t) = ∞, provides no information on the
value of f ′(x).

Claim 5.18. Let x ∈ X ⊆ R and f : X → R be continuous. If f is differentiable
at all t ̸= x such that limt→x f

′(t) ∈ R, then f ′(x) = limt→x f
′(t). That is, f is

differentiable and f ′ is continuous at x.

https://www.desmos.com/calculator/uuuvli3rd8
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§5.5 (Self) When are derivatives bounded?

Note 5.19. Even if a function f : X → R has a complete bounded domain X ⊆ R
and is itself bounded, its derivative does not have to be bounded — courtesy of
oscillations and cusps. Illustrations are provided by Figures 4.4, 5.2, and 5.7.

0.5 1 1.5 2

0.5

1

(a) A one-sided cusp.

0.5 1 1.5 2

0.5

1

(b) A two-sided cusp.

Figure 5.7: Some examples of cusps (Desmos).

Definition 5.20. Let f : X → R be a continuous function where X ⊆ R. We say
that f ′ is unbounded by oscillation, at x ∈ X, iff there exist sequences un → x and
vn → x, such that

(a) f is differentiable at all vn, and
(b) limn→∞|f ′(vn)| = ∞, and
(c) f(un+1)− f(un) = (−1)n for all n or f(un+1)− f(un) = (−1)n+1 for all n.

Does this definition make sense? For what it’s worth, the functions in Figures 4.4, 5.2,
and 5.8 satisfy this definition — their derivatives are unbounded by oscillation at x = 0.
So, maybe this definition is fine. But only time (and more experimentation) will tell.

Definition 5.21. Let f : X → R be a continuous function where X ⊆ R. We say
that f has a (vertical) cusp at x iff there is a sequence vn → x, such that f ′(vn) is
always positive or always negative and limn→∞ f ′(vn) = ±∞.

Indeed, the functions in Figures 5.7, 5.9, and 6.1 have a cusp under this definition.
However, let f : R+

0 → R be defined by

f(x) =


√
x if x is rational,

−√
x if x is irrational.

.

Our intuition tells us that there is a cusp at x = 0; see 5.10. Yet, our definition implies
that there are no cusps! Are we on the cusp of defeat? (Yes I had to make that pun.)

https://www.desmos.com/calculator/g8cylyktmo
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0-0.01 -0.005 0.005 0.01

-0.01

-0.005

0.005

0.01

(a) (Desmos)

0-0.01 -0.005 0.005 0.01

-0.01

-0.005

0.005

0.01

(b) (Desmos)

Figure 5.8: Discontinuous functions whose derivatives are unbounded by oscillation at
x = 0.

0.5 1 1.5 2

-0.5

0.5

Figure 5.9: Another cusp, given by the function f(x) :=
√
x cos(x) (Desmos).

https://www.desmos.com/calculator/2g3smei5fa
https://www.desmos.com/calculator/wlcp21oh28
https://www.desmos.com/calculator/ny2rtzexre
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Not really; since f is differentiable nowhere, for our purposes — of considering when a
derivative is bounded — we do not care for such functions. But, under our definition,

0.5 1 1.5 2

-1

-0.5

0.5

1

Figure 5.10: On the cusp of defeat? (Desmos)

Figure 5.11 does show a strange cusp. [continue investigating]

1 1.5

0.5

1

Figure 5.11: A cusp at x =
∑

1/n2, created by line segments of gradient n and length
1/n2 (Desmos).

Question 5.22. Let f : X → R be a continuous function where X ⊆ R. If f has no
cusps and at no point is its derivative f ′ is unbounded by oscillations, then must
f ′ be bounded?

§5.6 (Self) Derivatives and constant functions

Question 5.23. Let the function f : S → R be infinitely differentiable on S ⊆ R. If
there is a x ∈ S, such that f (n)(x) = 0 for all n, then must f evaluate to zero in a
small neighbourhood around x?

https://www.desmos.com/calculator/ezlggviv1t
https://www.desmos.com/calculator/veotdtllsh
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Question 5.24. Let the function f : S → R be infinitely differentiable on S ⊆ R. If
there is a x ∈ S, such that f (n)(x) = 0 for all n, then must f be the zero function
on S?

§5.7 (Self) A collection of examples

Observation 5.25. There exists a function f : R → R that is differentiable only at
zero.

Proof. The function f(x) := 1Q · x2 is differentiable at zero, by 5.12.

Observation 5.26. There is a continuous function f : R → R that is differentiable
at zero and nowhere else.

Proof. Consider the well-known Weierstrass function f : R → R defined by f(x) :=∑∞
n=0 a

n cos(bnπx) — where a ∈ (0, 1) and b is a positive odd integer, such that
ab > 1 + 3π/2. Recall that it is continuous but differentiable nowhere. Therefore,
the continuous function g : R → R with g(x) := x2f(x)(1 − a) is differentiable at
zero and nowhere else, by 5.12.

0-5 5

-5

5

Figure 5.12: The graph of g(x) against x. (Desmos)

Note 5.27. The set of differentiable points can even be made to contain a limit
point.

https://www.desmos.com/calculator/mrqtduqqli
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0-0.05 0.05

0.0005

0.001

Figure 5.13: (Desmos)

It is also possible to make it an infinite set with no limit points.

0-2 2

-0.1

-0.05

0.05

0.1

Figure 5.14: (Desmos)

Question 5.28. Is there a uniformly continuous function f : R → R that is nowhere
differentiable?

Question 5.29. Is there a uniformly continuous function f : R → R that is differ-
entiable at only one point?

Observation 5.30. It is possible that f : X → R (where X ⊆ R) is not differentiable
at zero, but |f | is.

https://www.desmos.com/calculator/bzed22xfxu
https://www.desmos.com/calculator/11nr6ydoyt
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Proof. Consider f : R → R with

f(x) :=

−1 if x /∈ Q,

1 if x ∈ Q.

Then, |f | is the constant function 1.

Claim 5.31. Let X,Y ⊆ R be dense in X ∪ Y . It is impossible for f : X ∪ Y → R
to be differentiable on X and nowhere else.

Claim 5.32. Let X ⊆ R and f : X → R be differentiable. Then, f ′ cannot contain
a jump or removable discontinuity.

§5.8 (Self) Parametric derivatives

Some motivation: Consider E ⊆ R and x, y : E → R. In calculus, one comes across the
(informal) notion that

dy

dx
=

dy/dt

dx/dt
,

which is often just handwaved to be the chain rule. Yet, in the first place, we do not have
definition for dy/dx — the derivative of one function with respect to another function is
undefined. We are only afforded x′(t) and y′(t) from the usual definition of the derivative
of real functions.

Of course, if x is invertible, then it is easy to recover dy/dx in a natural way: Since

dyx−1x(t)

dx(t)
=
(
yx−1

)′
(x(t)) =

y′(t)

x′(t)

from the usual definition, defining dy/dx := y′/x′ makes perfect sense.

However, in general there is no need for x to be locally invertible at any point, or for x

and y to be differentiable. A simple example: the identity function on the reals y(x) = x

can be parametrised by x(t) := y(t) := t2
∑∞

n=0 a
n cos(bnπt) for t ∈ R, where a ∈ (0, 1)

and b is a positive odd integer. See Figure 5.12.

But clearly, regardless of how we parametrise y(x) = x, its derivative dy/dx should
always exist. After a number of revisions, this is what I came up with:

Definition 5.33. Let E ⊆ R and x, y : E → R. Then, y is differentiable at s ∈ E

with respect to x iff both following conditions are upheld.

• x(s) is an interior point of

{
x(t) :

∥∥∥∥∥
(
x(s)

y(s)

)
−
(
x(t)

y(t)

)∥∥∥∥∥ < η

}
for each η > 0.
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• For some dxy(s) ∈ R and all ε > 0, there is δ > 0 such that

∣∣∣∣ y(s)− y(t)

x(s)− x(t)
− dxy(s)

∣∣∣∣ < ε if

∥∥∥∥∥
(
x(s)

y(s)

)
−
(
x(t)

y(t)

)∥∥∥∥∥ < δ.

The number dxy(s) is called the derivative of y at s with respect to x. When dxy(s)

exists for every s ∈ X, we say that dxy is the derivative of y with respect to x.

Note 5.34. Sanity check ✓: When x = idX , we recover the usual definition of the
derivative: dxy(s) = y′(s) for all interior points s of X.

Question 5.35. Suppose x : E → R and y : E → R are differentiable at s, where
E ⊆ R. Then, must dxy(s) = y′(s)/x′(s) if x′(s) ̸= 0? If not, what additional
conditions are sufficient for dxy(s) = y′(s)/x′(s)?

Claim 5.36. Let x : E → R and y : E → R, where E ⊆ R. When dxy(s) exists,
neither x′(s) nor y′(s) need to exist.

§5.9 Theorems

Theorem 5.8 (Fermat). If f : R → R is differentiable at x ∈ R and has a local
extremum at x, then f ′(x) = 0.

Proof. Wlog, f(x) is a local minimum. Let δ > 0 such that f(t) ≥ f(x), for all
|t− x| < δ. Since f(x)−f(t)

x−t ≥ 0 for t < x and f(x)−f(t)
x−t ≤ 0 for t > x, we have that

f ′(x) ≥ 0 and f ′(x) ≤ 0. Hence, f ′(x) = 0.

Theorem 5.9 (Cauchy’s mean value theorem). If f, g : [a, b] → R are both continuous
everywhere and differentiable on (a, b), then

(f(b)− f(a))g′(x) = (g(b)− g(a))f ′(x)

for some x ∈ (a, b).

Note. Even if f : [a, b] → R is differentiable at some point x, it does not have
to be differentiable on some neighbourhood of x. A simple example: consider
f : [−1, 1] → R defined by

f(t) :=


0 if t = 0,⌊
t−1
⌋−2 if t ∈ Q,

−
⌊
t−1
⌋−2 if t /∈ Q.

It is clear that f is differentiable at only x = 0, where f ′(x) = 0. See Figure 5.15
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for an illustration.

0-1 -0.5 0.5 1

-1

-0.5

0.5

1

Figure 5.15: An illustration of f , which is bounded by ±x2 and ±4x2 (Desmos).

Claim. Consider when f : R → R is differentiable at x ∈ R.
(a) If f ′(x) > 0, then there exists δ > 0, such that f(u) < f(x) < f(v) for all

0 < x− u < δ and 0 < v − x < δ.
(b) If f ′(x) = 0, then x is a local extremum.

Proof.
(a) This is true. Consider when, for all δ > 0, there is 0 < x−u < δ with f(x)−

f(u) ≤ 0, or 0 < v−x < δ with f(x)−f(v) ≥ 0. Then, f(x)−f(u)
x−u , f(x)−f(v)

x−v ≤
0 so f ′(x) ≤ 0.

(b) No, this is false, for there exists stationary points of inflection. Consider
f(t) := t3 and x = 0. Then, f ′(0) = 0.

Theorem 5.11. Suppose f is differentiable in (a, b).
(a) If f ′(x) ≥ 0 for all x ∈ (a, b), then f is monotonically increasing.
(b) If f ′(x) = 0 for all x ∈ (a, b), then f is constant.
(c) If f ′(x) ≤ 0 for all x ∈ (a, b), then f is monotonically decreasing.

Proof. Parts (a) and (c) are proven similarly to part (a) of the above claim. For
(b), suppose wlog that f(x) ̸= f(y) for some x, y ∈ (a, b). Then, by theorem 5.9,
we have f ′(z) = f(x)−f(y)

x−y ̸= 0 for some z ∈ (x, y).

Theorem 5.12 (Darboux). If f : [a, b] → R is differentiable on [a, b] with f ′(a) <

λ < f ′(b), then f ′(x) = λ for some x ∈ (a, b).

Lemma. Let X ⊆ Y and Z be metric spaces f : X × Y → Z. If L :=

limx→p limy→x f(x, y) and limy→p f(x, y) exist, then limx→p limy→p f(x, y) exists

https://www.desmos.com/calculator/2pqjg4apei


CHAPTER 5. DIFFERENTIATION 73

and evaluates to L.

Proof. Let ε > 0, Lx := limy→x f(x, y), and Kx := limy→p f(x, y). Pick δp, δx, δ
′
x >

0 such that
• d(Lx, L) < ε/3 for all x ∈ Nδp(p).
• d(f(x, y), Lx) < ε/3 for each y ∈ Nδx(x).
• d(f(x, y),Kx) < ε/3 for every y ∈ Nδ′x(p).

Now pick x ∈ Nmin{δp,δx/2}(p) and y ∈ Nmin{δ′x,δx/2}(p). We see that

d(Kx, L) ≤ d(f(x, y),Kx) + d(f(x, y), Lx) + d(Lx, L) < ε.

Lemma (Improved ×). Let X ⊆ Y and Z be metric spaces f : X × Y → Z. If
L := limx→p limy→x f(x, y) exists, then limx→p limy→p f(x, y) exists and evaluates
to L.

Proof. Let ε > 0 and Lx := limy→x f(x, y). Pick δx > 0 such that d(f(x, y), Lx) <

ε/2 for each y ∈ Nδx(x). For a sequence yn → p, choose N such that d(yn, p) <

δx/2 if n ≥ N . For x ∈ Nδx/2(p), notice d(x, yn) < δx so d(f(x, yn), f(x, ym)) < ε.
Hence, Kx exists. The proof continues as above. ×

Figure 5.16: An illustration of how the improved lemma can fail.

Question. Given two metric spaces X and Y , is there any canonical metric on
X × Y ? What about when X ⊆ Y ?

Theorem 5.13 ( L’Hospital’s Rule). Suppose f, g : X → R are differentiable on
(a, b) ⊆ X ⊆ R, and g′(x) ̸= 0 for all x ∈ (a, b), where a, b ∈ [−∞,∞]. Assume that
f ′(x)/g′(x) → A as x → a. If limx→a f(x) = limx→a g(x) = 0, or if limx→a g(x) =

±∞, then f(x)/g(x) → A as x → a.

L’Hospital is pronounced as loh-pee-tahl.
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Proof. Wlog, (for each x) there is δ > 0 for which g(t) ̸= g(x) if t ∈ Nδ(x). So,

lim
x→a

f ′(x)

g′(x)
= lim

x→a
lim
t→x

f(x)− f(t)

g(x)− g(t)
= lim

x→a

f(x)

g(x)

by the above lemma, when limx→a f(x) = limx→a g(x) = 0.

f (x)

g(x)

(a) The graph of f(x) = ex
2(1.7−x)−1

+ x −
1 against g(x) = x and some selected points
(g(xn), f(xn)).

f (x)

g(x)

gradient =
f xn+ 1 − f xn
g xn+ 1 − g xn

gradient =
f xn
g xn

(b) The line segments joining the origin and
the selected (g(xn), f(xn)); the line segments
joining (g(xn), f(xn)) and (g(xn+1), f(xn+1)).

Figure 5.17: Notice that the pink line segments and blue line segments both converge
to the green tangent; the gradients f(xn+1)−f(xn)

g(xn+1)−g(xn)
and f(xn)

g(xn)
converge to the same limit 1

(Desmos).

https://www.desmos.com/calculator/ih1lrexva9
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f (x)

g(x)

(a) f(x) = x2 sin(1/x) + x against g(x) = x.

f (x)

g(x)

(b) n ≥ 1

f (x)

g(x)

(c) n ≥ 10

f (x)

g(x)

(d) n ≥ 20

(e) n ≥ 30

Figure 5.18: Notice the same behaviour as in 5.17. (Desmos)

https://www.desmos.com/calculator/3itpi63nct
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(a)

gradient = df
dg
=
f ′ xn
g′ xn

gradient = lim x→a
f ′(x)
g′(x)

→

gradient =
f xn
g xn

→

gradient = lim x→a
f (x)
g(x)

(b)

Figure 5.19: The case of limx→a g(x) = ∞, with f(x) = g(x) + 1 + sin(g(x)2)/g(x)2

(Desmos).

Theorem 5.14 (Taylor). Suppose n is a positive integer and f : [a, b] → R, such that
f (n−1) : [a, b] → R is continuous and f (n)(t) exists for every t ∈ (a, b). Let α, β be
distinct points of [a, b] and define

P (t) :=

n−1∑
k=0

f (k)(α)

k!
(t− α)k.

Then

f(β) = P (β) +
f (n)(x)

n!
(β − α)n,

for some x ∈ (α, β) ∪ (β, α).

§5.10 Hw 9

Exercise 5.1. Let f : R → R and suppose that

|f(x)− f(y)| ≤ (x− y)2

for all real x and y. Prove that f is constant.

Proof. Since
∣∣∣f(x)−f(y)

x−y

∣∣∣ ≤ |x − y|, we notice that f ′(x) = 0 for all x ∈ R. Hence,
f is a constant function, by theorem 5.11.

Exercise 5.2. Suppose f ′(x) > 0 in (a, b). Prove that f is strictly increasing in

https://www.desmos.com/calculator/yborbedyw4


CHAPTER 5. DIFFERENTIATION 77

(a, b), and let g be its inverse function. Prove that g is differentiable, and that

g′(f(x)) =
1

f ′(x)
(a < x < b).

Proof. This preceding claim suffices to prove that f is strictly increasing. Pick a
sequence yn → f(x) and let xn = g(yn). Since xn → x by continuity,

g′(f(x)) = lim
n→∞

g(f(x))− g(yn)

f(x)− yn
= lim

n→∞

x− xn
f(x)− f(xn)

=
1

f ′(x)
.

Remark. Notice that

g′(f(x)) = lim
y→f(x)

g(f(x))− g(y)

f(x)− y
= lim

t→x

x− t

f(x)− f(t)
=

1

f ′(x)

is also a viable alternative, courtesy of continuity.

Exercise 5.3. Suppose g : R → R has a bounded derivative (say |g′| < M). Fix
ε > 0, and define f(x) = x + εg(x). Prove that f is injective if ε is small enough.
(A set of admissible values of ε can be determined which depends only on M .)

Proof. Pick ε < 1/M . Then, for g′(x) ≤ 0, we have f ′(x) = 1 + εg′(x) ≥ 1 +

g′(x)/M > 0. i.e. f is strictly increasing.

2 4 6

2

4

6

(a) ε is too big.

2 4 6

2

4

6

(b) ε is just small enough.

2 4 6

2

4

6

(c) ε is very small.

Figure 5.20: An example for exercise 5.3 given by g(x) := sin(x). The black curves
indicate the region in which f is injective and the green line is the tangent to g at x = π
(Desmos) (mp4 animation).

Exercise 5.5. Suppose f is defined and differentiable for every x > 0, and f ′(x) → 0

as x → ∞. Put g(x) := f(x+ 1)− f(x). Prove that g(x) → 0 as x → ∞.

Proof. Pick M ∈ R such that |f ′(x)| < ε, for each x > M . By the mean value
theorem, there exists c ∈ (x, x+ 1) with |f(x+ 1)− f(x)| = |f ′(c)| < ε.

https://www.desmos.com/calculator/bmmbodiy08
https://grassglass.github.io/Videos/exercise-5.3-example.mp4
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Exercise 5.6. Suppose
(a) f is continuous for x ≥ 0,
(b) f ′(x) exists for x > 0,
(c) f(0) = 0,
(d) f ′ is monotonically increasing.

Put
g(x) :=

f(x)

x
(x > 0).

and prove that g is monotonically increasing.

Proof. Let x > 0. By the mean value theorem, f ′(x) ≥ f ′(c) = f(x)
x for some

c ∈ (0, x). Hence, g′(x) ≥ 0.

Remark. The above holds for f(0) ≤ 0, since we have that f ′(c) ≥ f(x)
x . Fur-

thermore, Cauchy’s mean value theorem yields the following generalisation. Let
f, g : [0,∞] → R be continuous everywhere and differentiable on (0,∞), such that
f(0) ≤ 0 and g(0) ≥ 0; both f ′ and g′ are monotonically increasing. Then,
h : (0,∞) → R with h(x) := f(x)/g(x) is monotonically increasing.

Note. Let f, g : (0,∞) → R with g(x) := f(x)/x. For g to be monotonically in-
creasing, it is necessary that f(0, δ) ⊆ (−∞, 0] for some δ > 0.

Proof. Suppose wlog that there is a sequence xn → 0+ and some ε > 0, with
f(xn) > ε. Then, limn→∞ g(xn) ≥ limn→∞ ε/xn = ∞. So, g is not monotonically
increasing.

Exercise 5.7. Suppose that f ′(x) and g′(x) ̸= 0 exist, with f(x) = g(x) = 0. Prove
that

lim
t→x

f(t)

g(t)
=

f ′(x)

g′(x)
.

(This holds also for complex functions.)

Proof. Observe that
f ′(x)

g′(x)
= lim

t→x

f(t)
t−x
g(t)
t−x

= lim
t→x

f(t)

g(t)
.

(We are allowed to combine the limits into one because g′(x) = 0 implies x is not
a limit point of the zeros of g.)
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0.5 1 1.5 2

-1

-0.5

(a) All conditions are satisfied, so g is mono-
tonically increasing (Desmos).

1 2 3

0.5

1

(b) When f(0) ̸= 0 and g is decreasing
(Desmos).

1 2 3 4 5

0.5

1

(c) When f ′ and g are both decreasing
(Desmos).

1 2 3 4

-1

-0.5

(d) When f ′ is decreasing, but g is increas-
ing (Desmos).

Figure 5.21: Some examples for exercise 5.6. The red curve denotes f and the blue curve
denotes g.

0-2 -1 1 2

-1

1

(a) (Desmos)

0-2 -1 1 2

-1

1

(b) (Desmos)

0-2 -1 1 2

-1

1

(c) (Desmos)

Figure 5.22: Some examples illustrating exercise 5.7. Red denotes f , blue denotes g, and
green denotes f/g.

https://www.desmos.com/calculator/dzez5xnaiy
https://www.desmos.com/calculator/7dhkjqdqzw
https://www.desmos.com/calculator/ojq3hwubrj
https://www.desmos.com/calculator/lbdbac9wzf
https://www.desmos.com/calculator/jexuwxqojn
https://www.desmos.com/calculator/sdvluzfnm6
https://www.desmos.com/calculator/zc2zg9hcq2
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§5.11 Other exercises

Exercise 5.8 (uniform differentiability). Suppose f ′ is continuous on [a, b] and ε > 0.
Prove that there exists δ > 0 such that∣∣∣∣f(t)− f(x)

t− x
− f ′(x)

∣∣∣∣ < ε,

whenever 0 < |t− x| < δ, and a ≤ x ≤ b, and a ≤ t ≤ b. (This could be expressed
by saying that f is uniformly differentiable on [a, b] if f ′ is continuous on [a, b].)
Does this hold for vector-valued functions too?

Claim. Let X ⊆ R be compact and f ′ : X → R be continuous. Then, f is uniformly
differentiable.
Hint by Eric: Apply the Mean Value Theorem.

Proof. Let ε > 0. By compactness, f is uniformly continuous: Pick δ > 0, such
that |f ′(x)− f ′(t)| < ε if 0 < |x− t| < δ. By the Mean Value Theorem,∣∣∣∣f(x)− f(t)

x− t
− f ′(x)

∣∣∣∣ = |f ′(y)− f ′(x)| < ε

for some y.

Note. The converse is trivial: the triangle inequality implies that any uniformly
differentiable function has a uniformly continuous derivative.

Question. Let X ⊆ R and f : X → R be differentiable. If |f ′| is bounded, must f

be uniformly continuous?

Claim. Let X ⊆ R. A function f : X → R is uniformly continuous iff the difference
quotient

f(x)− f(y)

x− y

is bounded, over all x, y ∈ X.

Proof. No, this is false. Consider f : [0, 1] → R with f(x) :=
√
x, which is uni-

formly continuous. Then, limx→0 f
′(x) = ∞.

Claim. The difference quotient M : X2 → R of a function f : X → R is given by

M(x, y) :=
f(x)− f(y)

x− y
.
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There exists f and some x ∈ X, such that

f ′(x) ̸= lim
(t,u)→(x,x)

M(t, u).

Question. Is there anything special about the class of functions f : X → R with

f ′(x) ̸= lim
(t,u)→(x,x)

M(t, u)

for all x ∈ X (where X ⊆ R)?

Exercise 5.14. Let f : (a, b) → R be differentiable. Prove that f is convex iff f ′ is
monotonically increasing. Assume next that f ′′ exists, and prove that f is convex
iff f ′′ ≥ 0.

Proof. If f is convex, then f ′ is monotonically increasing by exercise 4.23. Con-
versely, when f ′ is monotonically increasing and y < t < x,

f(t)− f(y)

t− y
≤ f(x)− f(y)

x− y

by the mean value theorem. Simplifying,

f(t) ≤ t− y

x− y
f(x) +

(
1− t− y

x− y

)
f(y).

Convexity follows from letting t = λx + (1 − λ)y. Finally, the equivalence of
a differentiable function being monotonically increasing and its derivative being
nonnegative makes the final equivalence trivial.

Exercise 5.15. Suppose a ∈ R and f : (a,∞) → R is twice-differentiable, and
M0,M1,M2 are the suprema of |f |, |f ′| and |f ′′|, respectively. Prove that

M2
1 ≤ 4M0M2.

Exercise 5.16. Suppose f is twice-differentiable on (0,∞), such that f ′′ is bounded
on (0,∞) and f(x) → 0 as x → ∞. Prove that f ′(x) → 0 as x → ∞.

Exercise 5.17. Suppose f : [−1, 1] → R is three times differentiable, such that

f(−1) = 0, f(0) = 0, f(1) = 1, f ′(0) = 0.

Prove that f (3)(x) ≥ 3 for some x ∈ (−1, 1). Note that equality holds for (x3+x2)/2.

Exercise 5.19. Suppose f : (−1, 1) → R and f ′(0) exists. Suppose −1 < αn < βn <
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1, αn → 0, and βn → 0 as n → ∞. Define the difference quotients

Dn :=
f(βn)− f(αn)

βn − αn
.

Prove the following statements:
(a) If αn < 0 < βn, then limDn = f ′(0).
(b) If 0 < αn < βn and (βn/(βn − αn)) is bounded, then limDn = f ′(0).
(c) If f ′ is continuous in (−1, 1), then limDn = f ′(0).

Give an example in which f is differentiable in (−1, 1) (but f ′ is not continuous at
0) and in which αn, βn tend to 0 in such a way that limDn exists but is different
from f ′(0).

Exercise 5.21. Let E be a closed subset of R. We saw in exercise 4.22 that there
is a real continuous function f on R whose zero set is E. Is it possible, for each
closed set E, to find such an f which is differentiable on R, or one which is n times
differentiable, or even is infinitely differentiable on R?

Exercise 5.26. Suppose f is differentiable on [a, b], and f(a) = 0, and there is a
real number A such that |f ′(x)| ≤ A|f(x)| on [a, b]. Prove that f(x) = 0 for all
x ∈ [a, b].

Exercise 5.27.
(a) Let ϕ be a real function defined on a rectangle R in the plane, given by

a ≤ x ≤ b and α ≤ y ≤ β. A solution of the initial-value problem

y′ = ϕ(x, y), y(a) = c (α ≤ c ≤ β)

is, by definition, a differentiable function f : [a, b] → R such that f(a) = c,
and α ≤ f ≤ β, and

f ′ = ϕ(x, f(x)) (a ≤ x ≤ b).

Prove that such a problem has at most one solution if there is a constant A

such that
|ϕ(x, y2)− ϕ(x, y1)| ≤ A|y2 − y1|

whenever (x, y1), (x, y2) ∈ R.
(b) Note that this uniqueness theorem does not hold for the initial-value problem

y′ = y1/2, y(0) = 0,

which has two solutions: f(x) = 0 and f(x) = x2/4. Find all other solutions.
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Proof.
(a) Let f and g be two solutions. Then,

∣∣(f − g)′(x)
∣∣ ≤ A|(f − g)(x)|

implies that f = g, by exercise 5.26.
(b) The set of zeros Z(f) of any solution f is closed. So pick x0 /∈ Z(f) and

v := max{z ∈ Z(f) | z < x0}. Then, f(x) = (x − v)2/4 for all v ≤ x ≤ x0.
By continuity, f(x) = (x− v)2/4 for every x ≥ v. So, the general solution is

f(x) :=


0 if u ≤ x ≤ v,

(x− u)2/4 if x ≤ u,

(x− v)2/4 if x ≥ v.

where −∞ ≤ u ≤ 0 and 0 ≤ v ≤ ∞.

u v

f (x)

x

Figure 5.23: The graph of f(x) against x (Desmos).

Exercise 5.28. Formulate and prove an analogous uniqueness theorem for systems
of differential equations of the form

y′j = ϕ(x, y1, . . . , yk), yj(a) = cj (j = 1, . . . , k).

Note that this can be rewritten in the form

y′ = Φ(x,y), y(a) = c

where y = (y1, . . . , yk) ranges over a k-cell, Φ is the mapping of a (k + 1)-cell into
the Euclidean k-space whose components are the functions ϕ1, . . . , ϕk and c is the
vector c1, . . . , ck. Use Exercise 26, for vector-valued functions.

https://www.desmos.com/calculator/dhd98rcevq
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Miscellaneous

x

1 + 2(x − 1)

1 + 1

22
+ 2 x − 1 + 1

23

1
1 + 1

23

1

1 + 1

22

Figure 6.1: Here’s an illustration of the function that I tried to use to answer my question
in chapter 4. But I realised it obviously doesn’t work. . . after I had spent the time to
draw out the graph and all. For the curious, it is the function f : [0,

∑
1/n3] → R

defined by f(x) :=
∑n−1

i=1 1/i2 + n
(
x−∑n−1

i=1 1/i3
)
, for x ∈

[∑n−1
i=1 1/i3,

∑n
i=1 1/i

3
]
,

and f(
∑

1/n3) :=
∑

1/n2 (Desmos).

Modified to allow any length and gradient for the line segments: (Desmos)
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https://www.desmos.com/calculator/fepgpu82gh
https://www.desmos.com/calculator/rd1fupzrt0


Chapter 7

(Self-Chapter) A rabbit hole?

Note. This chapter is still very much a work in progress. This is the core question of
this chapter:

Question 7.1. Let E be a subset of a metric space X and Y be a metric space.
Then, what conditions are strong enough for all bounded functions f : E → Y to
have a continuous extension to X?

From Figure 4.5 and the associated collection of self-exercises, we see that ‘holes’ in Y

might be the main issue in preventing continuous extensions from always existing. So,
let us try to “patch” it up with new points p.

The idea is to define each point p based on its distance from every point in Y , hence
uniquely identifying the point p. That is, p = {(y, d(p, y)) | y ∈ Y }. Take Y = R − {0}
for example: p0 = {(y, y) | y ∈ Y } = idY is the new point representing the hole 0 /∈ Y .
All other points x are represented by px : Y → R+

0 where px := |x− y| for all y ∈ Y . So,
the ‘patched version’ of Y is Y ⊗ := {px |x ∈ Y } ∪ {p0} ∼= R.

Notice that the metric |·| on R ∼= Y ⊗ was what enabled us to define Y ⊗ easily. In general,
however, we lack this luxury. We may attempt to circumvent this issue by broadly
defining Y ⊗ as the set of all functions Y mapping into R+

0 . Immediately, we sense that
this definition is inappropriate: there can exist p1 ̸= p2 such that p1(x) = p2(x) = 0 for
some x. But the latter implies, informally, that d(p1, x) = d(p2, x) = 0 so p1 = p2.

An easy fix is found by imposing this condition:

If p(x) = 0 for some x, then p(y) = d(x, y) for all y ∈ X.

Yet,

Definition 7.2. For a subset E of a metric space X, its exterior ExtX(E) is the
maximal connected subset of X −E (which exists by Hausdorff’s Maximal Princi-
ple).

85
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Definition 7.3. × A metric space X is perforated iff ExtY (X) ̸= X∁ for some metric
space Y which X can be (isometrically) embedded into.

Definition 7.4. × A metric space X is perforated iff it contains a disconnected
subset.

Question 7.5. Let E ⊆ X and Y be metric spaces. If Y is not perforated, then do
all bounded functions f : E → Y have a continuous extension to X?

Definition 7.6. The L-patch point of a metric space X, that lies a distance r from
x on the line segment joining x and y, is as the function px,y,r : X → R+

0 , such that
px,y,r(y) := d(x, y)− r and

px,y,r(z) :=

√
r2 + d(x, z)2 +

d(y, z)2 − d(x, z)2 − [r + d(x, y)− d]2

r[r + d(x, y)− d]
.

Definition 7.7. The line patching LX of a metric space X, is defined as the set of
functions px,y,r : X → R+

0 for x, y ∈ X and r ≥ 0. That is,

LX := {px,y,r |x, y ∈ X and r ≥ 0}.

Question 7.8. Let E ⊆ X and Y be metric spaces. Does a bounded function
f : E → Y such that f [FrE(E)] ⊆ Int(Y ) always have a continuous extension to X?



Chapter 8

Bibliography

(a) Cover page is modified from https://tex.stackexchange.com/a/85989.

(b) Diagram on cover page: https://tex.stackexchange.com/a/525667.

(c) Figure 3.5 is modified from https://tex.stackexchange.com/a/333261.

87

https://tex.stackexchange.com/a/85989
https://tex.stackexchange.com/a/525667
https://tex.stackexchange.com/a/333261

	The Real and Complex Number Systems
	Hw 1
	Hw 2

	Basic Topology
	Theorems
	Hw 3
	Hw 4
	Hw 5

	Numerical Sequences and Series
	Hw 5
	Theorems
	Hw 6

	Continuity
	Theorems
	(Self) Limits at infinity for metric spaces?
	Hw 7
	Hw 8
	Other exercises

	Differentiation
	(Self) The gradient of functions
	(Self) Investigating derivatives in normed spaces
	(Self) A squeeze theorem for derivatives?
	(Self) Continuity of the derivative
	(Self) When are derivatives bounded?
	(Self) Derivatives and constant functions
	(Self) A collection of examples
	(Self) Parametric derivatives
	Theorems
	Hw 9
	Other exercises

	Miscellaneous
	(Self-Chapter) A rabbit hole?
	Bibliography

