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Chapter 2

Sequences of Real Numbers

§2.5 Infinite Limits

Exercise 2.51. Prove Cauchy’s Limit Theorema. That is, let {bn}∞n=1 be a
strictly increasing sequence of positive numbers that go to infinity and let {an}∞n=1

be a sequence. Prove that if the sequence
{
an − an−1

bn − bn−1

}∞

n=2

converges to c, then

limn→∞
an
bn

= c.

Hint. Exercise 2-16 with pn := bn − bn−1 and another appropriate sequence.
aAlso known as the Stolz-Cesaro Theorem

Proof. Notice that limn→∞
∑n

k=1 bk+1 − bk = limn→∞ bn+1 − b1 = ∞. Hence, by
exercise 2-16,

c = lim
n→∞

n∑
k=1

(bk+1 − bk)

(
ak+1 − ak
bk+1 − bk

)
n∑

k=1

(bk+1 − bk)

= lim
n→∞

an+1 − a1
bn+1 − b1

= lim
n→∞

an+1

bn+1 − b1
.

Furthermore, we see that

lim
n→∞

(
an+1

bn+1 − b1
− an+1

bn+1

)
= lim

n→∞
b1 · lim

n→∞

an+1

bn+1 − b1
· lim
n→∞

1

bn+1
= 0.

Consequently,
lim
n→∞

an
bn

= c.
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CHAPTER 2. SEQUENCES OF REAL NUMBERS 3

Figure 2.1: An Illustration of Cauchy’s Limit Theorem



Chapter 3

Continuous Functions

§3.5 Properties of Continuous Functions

Theorem 3.34. The Intermediate Value Theorem Let a < b and let f : [a, b] →
R be a continuous function. If f(a) < 0 and f(b) > 0 (or vice versa) then there is
a c ∈ (a, b) such that f(c) = 0 (Also see Figure 8(a).)

V1:

Proof. Assume, for the sake of contradiction, that f(c) ̸= 0 for all c ∈ (a, b).

First consider the case where for all n ∈ N, there exists xn ∈ [a, b] so 0 < f(xn) <

1/n. By AC and the Bolzano-Weierstrass Theorem, we can construct a sequence
{xn}∞n=1 of such xn, that converges to some limit L and whose image under f ,
{f(xn)}∞n=1, goes to 0. Consequently, from The Squeeze Theorem and continuity,
f(L) = limn→∞ f(xn) = 0, contradicting our initial assumption that 0 /∈ f [(a, b)].

Now consider when there exists ε > 0 so for any y, if 0 < y < ε then y /∈ f [a, b].
Let εs > 0 be the supremum of such ε. For each n ∈ N, there exists xn ∈ [a, b] with
εs ≤ f(xn) < εs + 1/n. Again, construct a sequence {xn}∞n=1 of such xn, which
converges to some limit L. Its image under f , {f(xn)}∞n=1, must also converge to
εs. Let Li be the infimum of such limits L. For every m ∈ N, there is some limit Lm

(possibly Li itself) for which Lm−Li < 1/m. Thus, also a corresponding sequence
{xm,n}∞n=1 converging to Lm; such that for any n ∈ N, there is a kn ∈ N with
εs ≤ f(xm,kn) < ε+1/n. By having xm be some xm,km , we can once more construct
a sequence {xm}∞m=1 converging to Li, so limz→Li f(z) = limn→∞ f(xn) = εs by
continuity.

If there is some δ > 0 for which every z with Li−δ < z < Li has f(z) ≥ εs, then let
δs be the supremum of such δ. Then either Li− δs = a, hence 0 < limz→a+ f(z) =

f(a) < 0, or if Li−δs < a, then limz→(Li−δs)− f(z) < 0 but limz→(Li+δs)+ f(z) > 0.
A contradiction to continuity. Accordingly, no such δ > 0 can exist. Instead, this
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CHAPTER 3. CONTINUOUS FUNCTIONS 5

tells us that there exists a sequence {yn}∞n=1 in [a, Li) converging to Li, having
yn < Li and f(yn) < 0, for all n ∈ N. Thence, limz→Li f(z) = limn→∞ f(yn) ≤ 0

by continuity, a contradiction to the conclusion in the prior paragraph.

V2:

Proof. Assume, for the sake of contradiction, that f(c) ̸= 0 for all c ∈ (a, b).

First consider the case where for all n ∈ N, there exists xn ∈ [a, b] so f(xn) ∈
(0, 1/n). By AC and the Bolzano-Weierstrass Theorem, there is hence a sequence
{xn}∞n=1 converging to some L ∈ [a, b] having f(xn) ∈ (0, 1/n) for each n, so conti-
nuity with The Squeeze Theorem says f(n) = limL→∞ f(xn) = 0. A contradiction.

Now consider when there exists ε > 0 so for any y, if y ∈ (0, ε) then y /∈ f [a, b].
Let εs > 0 be the supremum of all such ε, bounded above by f(b); allowing us
to again construct a sequence {xn}∞n=1 converging to some L ∈ [a, b], but with
f(xn) ∈ [εs, εs + 1/n) for each n ∈ N.

Let Li be the infimum of all possible limits L ∈ [a, b], for which there exists any ac-
companying sequence {xn}∞n=1 as described above which converges to L. For every
m ∈ N, there therefore is a limit Lm ∈ [Li, Li + 1/m) and its corresponding se-
quence {xm,n}∞n=1 with some xm,km ∈ (Lm−1/m,Lm+1/m) ⊆ (Li−1/m,Li+2/m)

and f(xm,km) ∈ [εs, εs+1/m). Choosing a xm,km for each xm, we have a sequence
{xm}∞m=1 that converges to Li, such that limz→Li f(z) = εs.

Finally, let yi := inf{x | f(x) ≥ εs} and presume yi ∈ (a, Li). Thus f(yi) =

limz→y−i
f(z) ≤ 0 and it must be that, for any n ∈ N, there exists yn ∈ (yi, yi+1/n)

so f(yn) ≥ ε; limz→y+i
f(z) = limn→∞ f(yn) ≥ ε. A contradiction, implying

yi > Li. However, now limz→L−
i
f(z) ≤ 0, contradicting limz→Li f(z) = εs.

Wherefore, our initial assumption is impossible, suggesting that the Intermediate
Value Theorem is true.



Chapter 4

Differentiable Functions

§4.3 Rolle’s Theorem and the Mean Value Theorem

Exercise 4.24. Let f : (a, b) → R be continuous and let x ∈ (a, b). Prove that if
f ′(z) exists for all z ∈ (a, b) \ {x} and limz→x f

′(z) exists, then f is differentiable
at x with f ′(x) = limz→x f

′(x).

Proof. Let ε > 0, we shall unpack 3 definitions first:
1. Since L := limz→x f

′(x) exists, there be some δ1 > 0 such that whenever
y ∈ (a, b) \ {x} has |y − x| < δ1, then

∣∣∣limz→y
f(z)−f(y)

z−y − L
∣∣∣ < 1

4ε.

2. Given any y ∈ (a, b), we have the limit Ly := limz→y
f(z)−f(y)

z−y . So for some

δ2 > 0, if z ∈ (a, b) \ {y} and |z − y| < δ2, then
∣∣∣f(z)−f(x)

z−x − Ly

∣∣∣ < 1
4ε.

3. Finally, by limit laws, there is a δ3 > 0, so for each y ∈ (a, b) \ {x} and
|y − x| < δ3,

∣∣∣f(z)−f(x)
z−x − L

∣∣∣ < 1
2ε.

Now, define δ := min {δ1, δ2/2, δ3} and let z ∈ (a, b) \ {x} so |z − x| < δ, and
y ∈ (a, b)\{x} with |y−x| < δ. Then, |z−y|−|y−x| ≤ |z−y−(x−y)| = |z−x| < δ.
Accordingly, |z − y| < |y − x| + δ < δ2/2 + δ2/2 = δ2. Therefore, the inequalities
of the previous paragraph hold. Which means,∣∣∣∣f(z)− f(y)

z − y
− L

∣∣∣∣ = ∣∣∣∣f(z)− f(y)

z − y
− Ly + (Ly − L)

∣∣∣∣ < 1

2
ε.

As such,∣∣∣∣f(z)− f(x)

z − x
− L

∣∣∣∣ ≤ ∣∣∣∣f(z)− f(x)

z − x
− f(z)− f(y)

z − y

∣∣∣∣+ ∣∣∣∣f(z)− f(y)

z − y
− L

∣∣∣∣ < 1

2
ε+

1

2
ε.

In other words, we have shown that for any ε > 0, there is δ > 0, so when
z ∈ (a, b)\{x} such that |z−x| < δ,

∣∣∣f(z)−f(x)
z−x − L

∣∣∣ < ε holds true. Consequently,

we have shown that f ′(x) := limz→x
f(z)−f(x)

z−x exists, and is in fact just L :=

limz→x f
′(x).
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CHAPTER 4. DIFFERENTIABLE FUNCTIONS 7

Exercise 4.25. Let f : (a, b) → R be differentiable. Prove that f ′ (which need not
be continuous) has the intermediate value property. That is, prove that for
all c < d in (a, b) and all v between f ′(c) and f ′(d) there is an m ∈ (c, d) so that
f ′(m) = v.

Proof. (Work in progress)

Exercise. Is f ′ continuous a.e.?



Chapter 5

The Riemann Integral I

Exercise 5.20. Power Rule for integration. Let r ∈ Q \ {1} and let a < b. In case
r < 0, let a and b either both be positive or both be negative. Prove that∫ b

a
xr dx =

1

r + 1
br+1 − 1

r + 1
ar+1.

Then explain why we needed to require a and b to be both positive or both negative
for r < 0.

Proof. This is clear from FTC and the Power Rule for differentiation. For r < 0,
notice 0r is undefined. Furthermore, even if we were to modify the integrand to be
defined at x = 0, we see that xr would still be unbounded on [a, b]. So, 5-10 tells
us xr is not integrable on [a, b].

Exercise 5.21. Integration by Parts. Let [a, b] ⊂ (c, d) and let F, g : (c, d) → R
be continuously differentiable with derivatives f and g′. Prove that∫ b

a
f(x)g(x) dx = F (b)g(b)− F (a)g(a)−

∫ b

a
F (x)g′(x) dx.

Proof. By the Product Rule,

(Fg)′ = fg + Fg′.

Since products of continuous functions are continuous, they are Riemann inte-
grable. Hence FTC implies∫ b

a
f(x)g(x) dx = F (b)g(b)− F (a)g(a)−

∫ b

a
F (x)g′(x) dx.
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CHAPTER 5. THE RIEMANN INTEGRAL I 9

Exercise 5.22. Integration by Substitution. Let [a, b] ⊂ (c, d), let g : (c, d) → R
be continuously differentiable with derivative g′ and let F be continuously differen-
tiable with derivative f such that the domain of F contains gJ[a, b]K. Prove that∫ b

a
f(g(x))g′(x) dx = F (g(b))− F (g(a)).

Proof. By the Chain Rule,

(F ◦ g)′(x) = f(g(x))g′(x).

Since products/compositions of continuous functions are continuous by limit
laws/Theorem 3.30, they are Riemann integrable. By FTC,∫ b

a
f(g(x))g′(x) dx = F (g(b))− F (g(a)).

Theorem 5.29. Let f : [a, b] → R be a bounded function. Then f is Darboux
integrable on [a, b] iff f is Riemann integrable on [a, b]. Moreover, the Darboux and
Riemann integrals are equal in this case, that is,∫ b

a
f(x) dx = L = U .

Proof. Let ε > 0.
First consider f being Darboux integrable. From Lemma 5.16, there must be a
partition R of [a, b] so Lf − L(f,R) < 1

2ε and U(f,R) − Uf < 1
2ε. Hence, f is

Riemann integrable since

U(f,R)− L(f,R) ≤ U(f,R)− Lf + Lf − L(f,R) < ε.

Conversely, when f is Riemann integrable, there is a partition S with Uf−L(f, S) <
1
2ε and U(f, S)− Lf < 1

2ε. Consequently, f is Darboux integrable as

Uf − Lf ≤ Uf − L(f,R)− Lf + U(f,R) < ε.

Furthermore, Lemma 5.14 guarantees the equality∫ b

a
f(x) dx = L = U .

Theorem. If g : [a, b] → R is Riemann integrable, so is |g|.
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Proof. Let ε > 0. Define ni := min{|mi|, |Mi|} and Ni = |mi|+ |Mi| − ni. Wlog,
ni = |mi|. Notice that

Ni − ni = |Mi| − ni + |mi| − ni ≤ |Mi −mi|.

By Riemann’s Condition, there is a partition P for which U(g, P ) − L(g, P ) < ε.
As such,

U(|g|, P )− L(|g|, P ) =
∑

(Ni − ni)∆xi ≤
∑

(Mi −mi)∆xi < ε.

Lemma. Let g : [a, b] → R be Riemann integrable. Then, for any sequence of
partitions {Pk}∞k=1 with norm ∥Pk∥ converging to 0,

lim
k→∞

L(g, Pk) =

∫ b

a
g(x) dx.

Proof. Let ε > 0. For each k, there is ti such that

g(ti)−mi <
ε

2k∆xi
.

Accordingly, for the evaluation set Tk consisting of all such ti,

R(g, Pk, Tk)− L(g, Pk) <
1

2
ε.

By Lemma 5.6, there is some K, such that when k ≥ K, we have∣∣∣∣R(g, Pk, Tk)−
∫ b

a
g(x) dx

∣∣∣∣ < 1

2
ε.

Hence, using the triangular inequality,∣∣∣∣L(g, Pk)−
∫ b

a
g(x) dx

∣∣∣∣ < ε.

Exercise 5.26. Let f : [a, b] → R be Riemann integrable on [a, b].
(a) For each n ∈ N, let Pn = {a = x

(n)
0 < · · · < x

(n)
kn

= b} be a partition of the
interval [a, b] with ∥Pn∥ < 1

n and let

sn :=

(
kn−1∑
i=1

m
(n)
i 1[

x
(n)
i−1, x

(n)
i

)
)

+m
(n)
kn

1[
x
(n)
kn−1, x

(n)
kn

],

where m
(n)
i = inf

{
f(x)

∣∣∣x ∈
[
x
(n)
i−1, x

(n)
i

]}
.
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i. Prove that for all n ∈ N and all x ∈ [a, b] we have sn(x) ≤ f(x).
ii. Prove that if f is continuous at x ∈ [a, b], then {sn(x)}∞n=1 converges to

f(x).
iii. Prove that

lim
n→∞

∫ b

a
|f − sn| dx = 0.

(b) Prove that there is a sequence {cn}∞n=1 of continuous functions on [a, b] such
that for all n ∈ N we have |cn| ≤ |f | and so that

lim
n→∞

∫ b

a
|f − cn| dx = 0.

Proof.
(a)

i. Fix n ∈ N and x ∈ [a, b]. There exists i with x ∈
[
x
(n)
i−1, x

(n)
i

)
. So,

sn(x) = m
(n)
i ≤ f(x).

ii. Let f be continuous at x ∈ [a, b], and ε > 0. Then, there is δ > 0,
such that if |z − x| < δ, then |f(z) − f(x)| < ε/2. Moreover, δ > 1/K

for some K ∈ N. When k ≥ K, there also exists |y − x| < 1/k with
f(y)− sk(x) < ε/2. Consequently,

f(x)− sk(x) ≤ |f(x)− f(y)|+ |f(y)− sk(x)| < ε.

iii. Let ε > 0. By our lemma, there exists N ∈ N for which when n ≥ N ,∫ b

a
|f−sn| dx =

∫ b

a
f(x) dx−

∫ b

a
sn(x) dx =

∫ b

a
f(x) dx−L(f, Pn) < ε.

(b) (Work in progress)

Exercise 5.27. Prove Riemann’s Condition for Riemann-Stieltjes integrals.
THat is, let f : [a, b] → R be bounded. Let g : [a, b] → R be nondecreasing and
prove that f is Riemann-Stieltjes integrable on [a, b] with respect to g iff for all
ε > 0 there is a partition P of [a, b] such that Ug(f, P )− Lg(f, P ) < ε.



Chapter 6

Series of Real Numbers I

§6.1 Series as a Vehicle To Define Infinite Sums

Definition. Let {xn}∞n=1 be sequence converging to 0, and mn to be the least number
such that |xmn − L| < 1/n. The 1-rate of convergence and 2-rate of convergence
are, respectively,

r1 := lim
n→∞

mn+1

mn
and r2 := lim

n→∞

mn+2 −mn+1

mn+1 −mn
.

Question. Does r2 always exist?

Question. Is there any range of values of r1 and/or r2 for which
∑∞

n=1 xn is gua-
reenteed to converge? Can we establish a biconditional?

Exercise 6.2. Compute the value of each of the series below
(d)

∞∑
j=4

2j−2

5j+4

Proof. (d) By theorem 6.2, we compute

∞∑
j=4

2j−2

5j+4
=

1

2500
· 2
5

[
1

1− 2
5

−
1−

(
2
5

)3
1− 2

5

]
=

4

234375
.

Exercise 6.3. More on the artihmetic of series (Theorem 6.4).
(c) Give an example of two series

∑∞
j=1 aj and

∑∞
j=1 bj such that

∑∞
j=1 aj + bj

converges but neither
∑∞

j=1 aj nor
∑∞

j=1 bj converges.
(d) Is it possible to find two series

∑∞
j=1 aj and

∑∞
j=1 bj such that

∑∞
j=1 aj + bj

12



CHAPTER 6. SERIES OF REAL NUMBERS I 13

converges, and exactly one of
∑∞

j=1 aj and
∑∞

j=1 bj converges.
(e) Is there a series

∑∞
j=1 aj and a c ∈ R such that

∑∞
j=1 caj converges, but∑∞

j=1 aj diverges?

Proof. (c) Let aj = 1 and bj = −1 for all j. Then,
∑∞

j=1 aj = ∞ and
∑∞

j=1 bj =

−∞, while
∑∞

j=1 aj + bj = 0.
(d) It is impossible. Let

∑∞
j=1 aj = S be a convergent series, and

∑∞
j=1 bj a

divergent series.
Also let L ∈ R. Then, there exists ε > 0 and some n ∈ N, for which∣∣∣∑∞

j=1 aj − S
∣∣∣ < ε and

∣∣∣∑∞
j=1 bj − (L− S)

∣∣∣ ≥ 2ε. Then, by the reverse
triangle inequality,∣∣∣∣∣∣

∞∑
j=1

aj + bj − L

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
∞∑
j=1

bj − (L− S)

∣∣∣∣∣∣−
∣∣∣∣∣∣
∞∑
j=1

aj − S

∣∣∣∣∣∣ ≥ 2ε− ε = ε.

(e) For any divergent series
∑∞

j=1 aj , such as the harmonic series,
∑∞

j=1 0 · aj =
0. But if c ̸= 0, then

∑∞
j=1 caj clearly must diverge.

Lemma. Let {dj}nj=1 be a sequnece of digits from 0 to 9. Then,

0.d1d2 . . . dn =
d1d2 . . . dn
99 . . . 9︸ ︷︷ ︸
n times

.

Proof. It is clear that

0.d1d2 . . . dn = d1d2 . . . dn

∞∑
j=1

10−n =
d1d2 · · · dn · 10−n

1− 10−n
=

d1d2 . . . dn
99 . . . 9︸ ︷︷ ︸
n times

.

Exercise 6.4. Convert each of the following infinite repeating decimals below into
a fraction. A bra over a set of digits means that these digits repeat indefintely.

(a) 0.25, (b) 0.25, (c) 0.9462, (d) 0.1473, (e) 12.00495.

Proof. By the above lemma, we see that
(a) 0.25 = 1

4 , (b) 0.25 = 25
99 , (c) 0.9462 = 9462

9999 = 3153
3333 ,

(d) 0.1473 = 1473
9999 , (e) 12.00495 = 12 + 4

1000 + 95
99 · 10−3 = 1188491

99000 .
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Exercise 6.8. 2k test. Let
∑∞

j=1 aj be a nonincreasing sequence with nonnegative
terms. Prove that

∑∞
j=1 aj converges iff

∑∞
j=1 2

ka2k converges.
Hint. Use Example 6.8 as guidance.

Proof. Assume
∑∞

k=1 2
ka2k diverges. By nonnegativity,

∑∞
j=1 2

ka2k = ∞ is clear.
Hence,

2n∑
j=1

aj = a1 +

n−1∑
k=0

2k+1∑
j=2k+1

aj ≥ a1 +

n−1∑
k=0

2ka2k+1 ≥ 1

2
a1 +

1

2

n∑
k=0

2ka2k .

So,
∑∞

j=1 aj = ∞.
Now suppose

∑∞
k=1 2

ka2k converges to S ≥ 0. Similarly,

2n∑
j=1

aj = a1 +
n−1∑
k=0

2k+1∑
j=2k+1

aj ≤ a1 +
n−1∑
k=0

2ka2k ≤ a1 + S.

Since
∑n

j=1 aj is nondecreasing and bounded, it definitely converges.

Exercise 6.9. Prove that
∑∞

j=1 (−1)j+1 1
j converges by showing that the partial

sums form a Cauchy sequence.

Proof. Let ε > 0 and pick N ∈ N, such that ε > N−1. Then, for every m ≥ n ≥ N

we have∣∣∣∣∣∣
m∑

j=n+1

(−1)j+1 1

j

∣∣∣∣∣∣ =
∣∣∣∣∣∣
m−n∑
j=1

(−1)n+1+j 1

n+ j

∣∣∣∣∣∣ ≤
m−n∑
j=1
j odd

1

n+ j
−

m−n∑
j=1

j even

1

n+ j + 1
≤ 1

n+ 1

which is less than ε.

Exercise 6.10. Translating between sequences and series. Let {an}∞n=1 be a se-
quence of real numbers. Prove that {an}∞n=1 converges iff the series

∑∞
j=1 aj+1 − aj

converges and that in this case we obtain the limit as limn→∞ an = a1 +∑∞
j=1 aj+1 − aj .

Proof. This is apparent by noticing that
∑n

j=1 aj+1 − aj = an+1 − a1, for any
n ∈ N and sequence {an}∞n=1.

Exercise 6.11. Use Lemma 6.3 to prove the Monotone Sequence Theorem.

Proof. Wlog, let {an}∞n=1 be a nondecreasing sequence bounded above by u. So,
aj+1 − aj ≥ 0 for each j, and {

∑n
j=1 aj+1 − aj}∞n=1 is bounded above by u +

|a1|. Hence, Lemma 6.3 tells us
∑∞

j=1 aj+1 − aj converges. The preceding exercise
implies {an}∞n=1 converges.
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Exercise 6.12. Let
∑∞

j=1 aj be a convergent series, let {jk}∞k=0 be a strictly increas-
ing sequence of natural numbers with j0 = 1 and for all k ∈ N let Ak :=

∑jk−1
j=jk−1

aj .
Prove that

∑∞
k=1Ak converges and

∑∞
k=1Ak =

∑∞
j=1 aj .

Proof. We see that
∑n

k=1Ak =
∑jn−1

j=1 aj for each n ∈ N. Hence, the result follows
immediately. (Recall that for any convergent sequence {sn}∞n=1, all subsequences
of {sn}∞n=1 have the same limit as {sn}∞n=1.)

§6.2 Absolute Convergence and Unconditional Convergence

Theorem 6.11 (Alternating Series Test). Let {bj}∞j=1 be a nonincreasing nonnegative
sequence such that limj→∞ bj = 0. Then,

∑∞
j=1 (−1)j+1bj converges.

Proof. This is clear from imitating what was done for exercise 6.9.

Proposition 6.13. If the series
∑∞

j=1 aj converges absolutely, then it converges.
Moreover, the triangular inequality |

∑∞
j=1 aj | ≤

∑∞
j=1 |aj | holds.

Proof. Let ε > 0 and pick N ∈ N, such that for n ≥ m ≥ N ,

n∑
j=m

|aj | < ε.

So, by the triangular inequality (exercise 1-42),∣∣∣∣∣∣
n∑

j=m

aj

∣∣∣∣∣∣ ≤
n∑

j=m

|aj | < ε.

Furthermore, from the reverse triangular inequality,

lim
n→∞

∣∣∣∣∣∣
n∑

j=1

aj

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∞∑
j=1

aj

∣∣∣∣∣∣ .
It is hence clear that ∣∣∣∣∣∣

∞∑
j=1

aj

∣∣∣∣∣∣ ≤
∞∑
j=1

|aj |.

Theorem 6.15 (Comparison Test). Let
∑∞

j=1 aj and
∑∞

j=1 bj be series with 0 ≤ aj ≤
bj for all j ∈ N. If

∑∞
j=1 bj converges, then

∑∞
j=1 aj converges, too.
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Proof. When
∑∞

j=1 bj converges, the partial sums
∑n

j=1 aj are bounded above by∑∞
j=1 bj . By Lemma 6.3,

∑∞
j=1 aj must converge.

Theorem 6.16. Let series
∑∞

j=1 aj converges absolutely iff it converges uncondi-
tionally.

Proof. Assume
∑∞

j=1 aj converges absolutely. Let σ be a permutation of N and
ε > 0. So, pick N ∈ N such that if n ≥ m ≥ N ,

n∑
j=m

|aj | < ε.

Fix M ∈ N, such that for any i ≥ M we have σ(i) ≥ N . Further define un :=

max{σ−1(j) | j ≤ n} ≥ n. For every n ≥ m ≥ M , we see that

n∑
i=m

|aσ(i)| ≤
un∑

j=N

|aj | < ε.

As such,
∑n

i=1 aσ(i) converges. Therefore,
∑∞

j=1 aj converges unconditionally.
Now consider when

∑∞
j=1 aj does not converge absolutely. Let {apk}∞k=1 and

{aqk}∞k=1 be the subsequences of all nonnegative and all negative aj , respectively.
Wlog,

∞∑
k=1

apk = ∞ and
∞∑
k=1

aqk = −∞.

Thus, for each n, there is the least natural number ℓn such that

ℓn∑
k=1

apk −
n∑

k=1

aqk ≥ n.

We hence have the permutation σ defined by

σ = (p1, p2, . . . , pℓ1︸ ︷︷ ︸
1 to ℓ1

, q1, pℓ1+1, pℓ1+2, . . . , pℓ2︸ ︷︷ ︸
ℓ1+1 to ℓ2

, q2, . . . , pℓn+1, pℓn+2, . . . , pℓn+1︸ ︷︷ ︸
ℓn+1 to ℓn+1

, qn+1, . . . ).

Hence,
∞∑
i=1

aσ(i) = ∞.

does not converge unconditionally

Remark. If exactly one of
∑∞

k=1 apk or
∑∞

k=1 aqk diverges, then
∑∞

j=1 aj diverges;
it does not converge unconditionally.
When that both series converge,

∑∞
j=1 |aj | ≤

∑∞
k=1 apk − aqk also converges, a

contradiction.
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Remark. To be pedantic, we would write σ(1) = p1 and

σ(i+ 1) =


σ(i) + 1 if σ(i) = pm for some ℓn ≤ m < ℓn+1,

pℓn+1 if σ(i) = qn for some n,

qn+1 if σ(i) = pℓn for some n.

Proposition 6.22. Let {a(i,j)}∞i,j=1 be a family of nonnegative numbers. Then, the
double series

∑∞
i=1

∑∞
j=1 a(i,j) converges iff for all bijections σ : N×N → N×N the

sum
∑∞

i=1

∑∞
j=1 aσ(i,j) converges. Furthermore, in this case the values are equal.

Proof. Assume the double series
∑∞

i=1

∑∞
j=1 a(i,j) =

∑∞
i=1 |

∑∞
j=1 a(i,j)| con-

verges. The preceding theorem guarantees unconditional convergence. So∑∞
i=1

∑∞
j=1 aσ(i,j) converges to the same value. (The necessary permutation on

N is obvious.)
The converse is trivial. Simply let σ be the identity function on N× N.

Exercise 6.19. Give an example of an absolutely convergent series
∑∞

j=1 aj so that∑∞
j=1 aj ̸=

∑∞
j=1 |aj |.

Proof. Consider the geometric sequence {(−1/2)j}∞j=1. Then, the sum

∞∑
j=1

(
−1

2

)j

= −1

2

whilst
∞∑
j=1

∣∣∣∣−1

2

∣∣∣∣j = 1

2
.

Exercise 6.21. Determine which of the following series converges. If it converges,
determine if it converges absolutely.

(a)
∞∑
j=1

1
j! , (b)

∞∑
j=1

(−1)j

j+
√
j
, (c)

∞∑
j=1

(−1)j

4j

Proof.
(a) Notice that 0 ≤ 1/j! ≤ (1/2)j−1 for all j. Hence, by the comparison test,∑∞

j=1
1
j! converges (absolutely).

(b) For each j, we have

0 ≤ 1

2j
≤ 1

j +
√
j
.

By the comparison test, since the harmonic series diverges, so must∑∞
j=1

(−1)j

j+
√
j
. Hence, absolute convergence is impossible. But regular con-

vergence is possible. Let ε > 0 and choose N ∈ N, such that ε > N−1. So,
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if n ≥ m ≥ N ,∣∣∣∣∣∣
n∑

j=m

(−1)j

j +
√
j

∣∣∣∣∣∣ =
∣∣∣∣∣∣
m−nn−m∑

j=0

(−1)m+j

m+ j +
√
m+ j

∣∣∣∣∣∣
≤

n−m∑
j=0

j even

1

m+ j +
√
m+ j

−
n−m∑
j=0
j odd

1

m+ j + 1 +
√
m+ j + 1

≤ 1

m+
√
m

< ε.

(c) We see that this is just a geometric series with constant ratio −1/4. Thus,
it converges (absolutely).

Exercise 6.22 (Limit Comparison Test for series). Let
∑∞

j=1 aj and
∑∞

j=1 bj be series
with positive terms. Prove that if limj→∞ aj/bj = c > 0, then either both series
converge or both series diverge.

Proof. Since c > 0, we can assume (for the sake of argument) wlog that
∑∞

j=1 bj

converges. Moreover, notice {aj/bj}∞j=1 is bounded from above by some u > 0. As
such, 0 < aj ≤ ubj for all j. Therefore,

∑∞
j=1 aj converges.

Note. The importance of c > 0 should be noted. If c = 0, then limj→∞ bj/aj = ∞.
As such, the “wlog” part of the proof fails to hold. It is possible that

∑∞
j=1 aj

converges, while
∑∞

j=1 bj diverges.

Example. Consider aj = 2−j and bj = 2j . Then, limj→∞ aj/bj = limj→∞ 2−2j = 0.
But it is clear that

∑∞
j=1 aj = 0, whilst

∑∞
j=1 bj = ∞.

The definition of the permutation σ in our proof of theorem 6.16 was a little inelegant.
Let’s try defining a little tool to help us have better notation (hopefully).

Definition. Given a sequence of permutations σi := (ai1, ai2, . . . , aiki) of ki numbers,
we define

(σ1, σ2, . . . ) := (a11, a12, . . . , a1k1︸ ︷︷ ︸
σ1

, a21, a22, . . . , a2k2︸ ︷︷ ︸
σ2

, . . . ).

Exercise 6.23. Let
∑∞

j=1 aj be a conditionally convergent series and let z ∈ R.
Prove that there is a bijection σ : N → N such that

∑∞
j=1 aσ(j) = z.

Proof. As in theorem 6.16, we let {apk}∞k=1 and {aqk}∞k=1 be the subsequences of
all nonnegative and all negative aj , respectively. Conditional convergence implies
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that and
∑∞

j=1 apk = ∞, and
∑∞

j=1 aqk = −∞. Hence, we define νn recursively by
ν0 := 0, and having νn be the least natural number with

νn∑
k=1

apk +

µn−1∑
k=1

aqk > z,

where µn−1 is the least natural number with

νn−1∑
k=1

apk +

µn−1∑
k=1

aqk < z.

Now define Pn := (pνn+1, pνn+2, . . . , pνn+1) and Qn := (qµn+1, qµn+2, . . . , qµn+1).
We obtain the permutation

σ := (P0, Q0, P1, Q1, . . . , Pn, Qn, . . . ).

Let ε > 0 and note that limk→∞ apk = limk→∞ aqk = 0. Thus, there is some K ∈ N
such that if k ≥ K, we have

0 ≤ apk < ε and 0 < −aqk < ε.

Consequently, ∣∣∣∣∣∣
k∑

j=1

aσ(j) − z

∣∣∣∣∣∣ < ε.

Exercise 6.24. Let {a(i,j)}∞i,j=1 be a family of real numbers so that the double series∑∞
i=1

∑∞
j=1 |a(i,j)| converges. Prove that

∑∞
i=1

∑∞
j=1 a(i,j) converges to a number

L and for all bijections σ : N×N → N×N the sum
∑∞

i=1

∑∞
j=1 aσ(i,j) converges to

the same number L.

Proof. Recall that 0 ≤ |
∑∞

j=1 a(i,j)| ≤
∑∞

j=1 |a(i,j)| always holds. So, the series

∞∑
i=1

∣∣∣∣∣∣
∞∑
j=1

a(i,j)

∣∣∣∣∣∣ ≤
∞∑
i=1

∞∑
j=1

|a(i,j)|

converges absolutely, and hence, unconditionally to some limit L.
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Some Set Theory

§7.1 The Algebra of Sets

Exercise 7.5. Let Xbe a set. An algebra is a set of sets A ⊆ P(X) such that
∅ ∈ A , if A ∈ A , then X \ A ∈ A , and if Aj ∈ A for all j = 1, . . . , n, then⋃n

j=1Aj ∈ A .
(a) Prove that if Aj ∈ A for all j = 1, . . . , n, then

⋂n
j=1Aj ∈ A .

(b) Let X be a set. Prove that the power set of X is an algebra.
(c) Let X be a set. Prove that A := {A ⊆ X |A or X \A is finite} is an algebra.
(d) Prove that an algebra need not contain countable unions of its elements.

Proof.
(a) Notice that X −

⋂n
j=1Aj =

⋃n
j=1 (X −Aj) ∈ A . So,

⋂n
j=1Aj ∈ A follows.

(b) We see that ∅ ⊆ X, and X − A ⊆ X for all A ⊆ X. Moreover, a union of
subsets of X is still a subset of X. Hence, the power set of X is indeed an
algebra.

(c) Since ∅ ⊆ X is obviously finite, ∅ ∈ A . For A ∈ A , clearly A or X − A

is finite. Thus, X − A ∈ A . Now let A1, A2, . . . , An ∈ A . If Aj is infinite
for some j, then X −

⋃n
j=1Aj ⊆ X − Aj is finite. When each Aj is finite,⋃n

j=1Aj is finite. Either ways,
⋃n

j=1Aj ∈ A holds.
(d) Consider the set ℸ of all finite subsets of N. It is easily verified to be an

algebra. However, the countable union
⋃∞

j=1{j} = N /∈ ℸ.

§7.2 Countable Sets

Lemma. Let {a(i,j)}∞j=1 be a family of numbers, such that the double series∑∞
i=1

∑∞
j=1 a(i,j) converges.

20
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Exercise 7.17. Let {a(i,j)}∞j=1 be a family of nonnegative numbers. Then the dou-
ble series

∑∞
i=1

∑∞
j=1 a(i,j) converges iff for all bijections σ : N → N × N the sum∑∞

i=1 aσ(i) converges. Furthermore, in this case the values are equal.

Proof. Assume
∑∞

i=1

∑∞
j=1 a(i,j) and let σ : N → N× N be a bijection. Fix n and

m. So, define ℸ := max{(π1 ◦ π)(ι) | ι ≤ n} and

iג := max{(π2 ◦ π)(j) | (π1 ◦ π)(ι) = i & ι ≤ n}.

Hence,

0 ≤
n∑

i=1

aσ(i) ≤
ℸ∑

i=1

∑iג
j=1

a(i,j) ≤
∞∑
i=1

∞∑
j=1

a(i,j).

The series
∑∞

i=1 aσ(i) must converge.
Conversely, suppose

∑∞
i=1 aσ(i) converges for all bijections σ : N → N × N and fix

n ∈ N. Now letting Mi := max{σ−1(i, j) | j ≤ m}, we have that

0 ≤
m∑
j=1

a(i,j) ≤
Mi∑
i=1

aσ(i) ≤
∞∑
i=1

aσ(i).

Therefore,
∑∞

j=1 a(i,j) converges for all i.
Now let ε > 0. Pick M ∈ N such that, for every 1 ≤ m ≤ n,

∞∑
j=1

a(i,j) −
m∑
j=1

a(i,j) <
ε

n
.

Thus, for M := max{σ−1(i, j) | i ≤ n & j ≤ m}, we see that

0 ≤
n∑

i=1

∞∑
j=1

a(i,j) < ε+
n∑

i=1

m∑
j=1

a(i,j) ≤ ε+
M∑
i=1

aσ(i) ≤ ε+
∞∑
i=1

aσ(i).

As such, the series
∑∞

i=1

∑∞
j=1 a(i,j) converges.

In fact, since
∞∑
i=1

∞∑
j=1

a(i,j) ≤
∞∑
i=1

aσ(i),

it holds that
∞∑
i=1

aσ(i) =
∞∑
i=1

∞∑
j=1

a(i,j).
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§7.3 Uncountable Sets

Exercise 7.23. Let F : [a, b] → R be a nondecreasing bounded function. Prove
that F can have at most countably many discontinuities.

Proof. Let x ∈ [a, b], L := sup f [a, x) and ε > 0. Then, there is y ∈ [a, x) for which
L− f(y) < ε. Consequently, since F is nondecreasing, for any |z − x| < x− y we
have L− f(z) ≤ L− f(y) < ε. So, only jump discontinuities are present.
(Work in progress)

Exercise 7.24. Prove that for every countable subset A ⊆ R there is a nonde-
creasing function f : R → [0, 1] that is continuous on R \ A and discontinuous at
every a ∈ A.

Proof. I assume the author means to prove continuity/discontinuity with respect
to R−A.
Wlog, consider A being countably infinite. Let there f be a bijection from N to
A. Define the function h : N → R by h(0) := 1/2 and the following.

i. If f(k + 1) < f(i) for all i ≤ k, then let h(n + 1) := h(ℓ)/2, where h(ℓ) :=

min{h(i) | i ≤ k}.
ii. When f(k + 1) > f(i) for every i ≤ k, let h(n + 1) := h(M)+1

2 , where
h(M) := max{h(i) | i ≤ k}.

iii. Otherwise, let h(k+1) = h(n)+h(m)
2 for the largest f(n) < f(k+1) and least

f(m) < f(k + 1) such that n,m ≤ k.
(Work in progress)

Exercise 7.25. Cantor sets.
(a) Prove that for any sequence Q = {qn}∞n=1 of numbers qn ∈ (0, 1/2) there is a

bijective function from CQ to the set of all sequences of zeroes and ones.
(b) Prove that CQ is uncountable.
(c) Prove that the set of endpoints of the intervals IQj,n that make up the CQ

n is
countable.

(d) Prove that every x ∈ CQ is the limit of a sequence of endpoints of the intervals
IQj,n.

Proof. (a) Every
(Work in progress)
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The Riemann Integral II

Proposition 8.3. Countable subsets of R have outer Lebesgue measure 0.

Proof. Wlog, let C ⊆ R be a countably infinite set. Then, there is a bijection
f : N → C. So, for each ε > 0 we define hε : N → P(R) by

hε(j) := (f(j)− εj , f(j) + εj).

We see that for ε ∈ (0, 1):

∞∑
j=1

|hε(j)| =
∞∑
j=1

2εj =
2ε

1− ε
= −2 +

2

1− ε
.

Furthermore,

lim
ε→0

−2 +
2

1− ε
= 0.

Therefore, λ(C) = 0.

Proposition 8.5. Let a, b ∈ R and a < b. Then, λ([a, b]) = b− a.

Proof. For each ε > 0, let I1 := (a−ε, b+ε), and for j ≥ 2, Iεj := [0, εj ]. Therefore,
given ε ∈ (0, 1),

∞∑
j=1

|Ij | ≥ b− a+ 2ε+
ε

1− ε
.

As ε → 0, this converges to b− a. i.e. λ([b− a]) ≤ b− a.
Now let Ij = (aj , bj) be a sequence of intervals that covers [a, b]. So by the Heine-
Borel Theorem,

∑n
j=1 |Ij | < b − a for some n. Wlog, aj ≤ aj+1 ≤ bj ≤ bj+1 for

each j. Therefore,

n∑
j=1

|Ij | ≥ b1 − a1 +

n∑
j=2

bj − bj−1 ≥ bn − a1 ≥ b− a.

23
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i.e. λ([b− a]) ≥ b− a.

Theorem 8.6 (The properties of the outer Lebesgue measure λ). With ∞ defined
to be greater than all real numbers and the sum of a divergent series of nonnegative
numbers being ∞ we have the following.

1. λ(∅) = 0.
2. If A ⊆ B, then λ(A) ≤ λ(B).
3. Outer Lebesgue measure is countably subadditive. That is, for all se-

quences {An}∞n=1 of subsets An ⊆ R the inequality

λ

( ∞⋃
n=1

An

)
≤

∞∑
n=1

λ(An)

holds.

Proof.
1. Let ε > 0 and Ij = (0, ε2−j). Then,

∑∞
j=1 Ij ≤ ε. Thus, λ(∅) = 0.

2. Let ε > 0, and {Ij}∞j=1 be a sequence of open intervals that covers B, such
that

∑∞
j=1 |Ij | < λ(B) + ε. Hence, it covers A, which implies

λ(A) ≤
∞∑
j=1

|Ij | < λ(B) + ε.

As such, λ(A) ≤ λ(B).
3. Let ε > 0 and σ : N → N×N be a bijection. For each n, choose a sequence of

open intervals {I(n,j)}∞j=1 that cover An, such that
∑∞

j=1 |I(n,j)| < λ(An) +

ε2−n. Notice that {Iσ(i)}∞i=1 covers
⋃∞

n=1An. By exercise 7.17,

λ

( ∞∑
n=1

An

)
≤

∞∑
i=1

|Iσ(i)| =
∞∑
n=1

∞∑
j=1

|I(n,j)| < ε+

∞∑
n=1

λ(An).

Consequently,

λ

( ∞⋃
n=1

An

)
≤

∞∑
n=1

λ(An).

Exercise 8.3. Let Q = {qn}∞n=1 be a sequence of numbers qn ∈ (0, 1/2) and let CQ

be the associated Cantor set as in Definition 7.22. We will use the notation of
Definition 7.22 throughout this exercise.

(a) Prove that λ(CQ
n ) =

∏n
j=1 2qj .

(b) Prove that {
∏n

j=1 2qj}∞n=1 converges.
(c) Prove that λ(CQ) = limn→∞

∏n
j=1 2qj .

(d) Prove that for any q ∈ (0, 1/2) the constant sequence Q = {q}∞n=1 yields a
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Cantor set CQ of measure zero.
Note. By exercise 7-25(b) in section 7.3 Cantor sets are uncountable. This
means there are uncountable sets of measure zero.

(e) Use Q =
{

2n+1−1
2n+2

}∞

n=1
to prove that there are Cantor sets that are not of

measure zero.
(f) Prove that there are Cantor sets whose Lebesgue measure is arbitrarily close

to 1.

Proof.
(a) If n = 0, then λ([0, 1]) = λ(CQ

n ) =
∏0

j=1 2qj = 1. So, assume n = k

and consider n = k + 1. It is clear that, λ(IQi,m) = λ(IQj,m) for all m and
i, j ≤ m. Therefore, λ(IQi,k) =

∏k
j=1 qj . Thus, λ(IQi,k+1) =

∏k+1
j=1 qj , and

hence, λ(CQ
n+1) =

∏k+1
j=1 2qj .

(b) Since 2qj < 1 for each j, this sequence is decreasing. Furthermore, it is
bounded below by 0, and hence, must converge.

(c) For any n, since CQ ⊆ CQ
n , we have that λ(CQ) ≤

∏n
j=1 2qj . That is,

λ(CQ) ≤ limn→∞
∏n

j=1 2qj .
This implies λ(CQ) ∈ R. So let {Ij}∞j=1 be a sequence of open intervals that
covers CQ, such that

∑∞
j=1 |Ij | converges. Fix some x ∈ CQ; then x ∈ Ik

for some k. Since limn→∞
∏n

j=1 qj = 0, pick i such that
∏i

j=1 qj < |Ik|.

∞∑
j=1

Ij ≥
m∏
j=1

2qj ≥ lim
n→∞

n∏
j=1

2qj .

(Work in progress)
Probably related to the funnei uncountability of the Cantor set.

(d) It follows from the above, that since 2q < 1,

λ(CQ) = lim
n→∞

(2q)n = 0.

(e)

Exercise 8.4. Use the Heine-Borel Theorem and the axioms for R except for Axiom
1.19 to prove the Bolzano-Weierstrass Theorem.

Exercise 8.5. Prove that if f : [a, b] → R is continuous and λ({x ∈ [a, b] | f(x) ̸=
0}) = 0, then f(x) = 0 for all x ∈ [a, b].

Exercise 8.6. Prove that if f, g : [a, b] → R are continuous almost everywhere, then
f + g is continuous almost everywhere.



Chapter 9

Resources

§9.1 Chapter 4: Differentiable Functions

1. Information on discontinuous derivatives

(a) https://math.stackexchange.com/questions/292275/discontinuous-derivative

(b) https://math.stackexchange.com/questions/112067/how-discontinuous-

can-a-derivative-be
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